Строение и свойства натуральных волокон. Применение натуральных волокон при изготовлении полимерных композиционных материалов Природные волокна растительного происхождения

Натуральные ткани: красота и энергия природы

Текстильные материалы, которые окружают человека – одежда, постельные принадлежности, шторы, гардины, мебельная обивка и многое-многое другое, – должны иметь не только привлекательную расцветку и оригинальный крой. Очень важно, чтобы все эти вещи были удобными, комфортными, гигиеничными и, что самое главное, не приносили вреда организму. Этими свойствами в полной мере обладают натуральные биологически чистые ткани.

Изготовленные из волокон, созданных самой природой, натуральные ткани отличаются исключительной экологичностью и безопасностью. По происхождению их разделяют на три основные группы:

  1. Растительные – хлопок, лен, конопля.
  2. Животные – шелк, шерсть.
  3. Минеральные – ость, асбест.

Каждому виду материала из натуральных, а не химических волокон присущи определенные свойства – как положительные, так и отрицательные. Остановимся на них более подробно.

Родиной хлопчатника считается Индия, причем раскопки археологов позволяют датировать начало возделывания этой культуры ХХХ веком до нашей эры. «Ткань, сотканная из воздуха» — такое описание дают хлопковому полотну древние летописи.

Завезенные в средние века в Европу первые рулоны хлопчатобумажной материи ценились буквально на вес золота. Носить одежду из этих тканей могли только самые состоятельные и знатные горожане.

Ассортимент хлопчатобумажных полотен, которые предлагает современная текстильная отрасль, исчисляется не одной сотней наименований. К несомненным достоинствам таких материалов можно отнести следующие:

  • гигроскопичность. Волокна хлопка могут впитать до 40% влаги, оставаясь сухими. Поэтому ткани часто используют для пошива летней одежды, постельных принадлежностей, банных полотенец и халатов;
  • прочность. Материал обладает достаточной крепостью и устойчивостью к механическим повреждениям. Правда, под воздействием высоких температур или ультрафиолетового излучения она заметно уменьшается;
  • аэрация. Одно из главных достоинств материала. Ткани, сделанные из хлопка, «дышат», не создавая на поверхности кожи тепличного эффекта;
  • легкость. Большинство хлопчатобумажных полотен имеют тонкую структуру, поэтому одежда из них практически невесома;
  • гипоаллергенность. Волокна не содержат в себе вредные для организма человека вещества и не вызывают раздражение кожи и другие заболевания. Хлопчатобумажные вещи может спокойно носить ребенок с первых минут появления на свет, поскольку они абсолютно безопасны;
  • простота ухода. Ткани легко стираются руками или в машинке, быстро сохнут и замечательно разглаживаются. Они стойки к различным химическим веществам, в том числе хлорсодержащим.

Полотна из хлопка удобно обрабатывать: они не скользят, мало осыпаются и обладают хорошей термопластичностью, то есть «запоминают» форму при утюжке. Но к сожалению, не все их свойства можно считать положительными. Имеются в списке и такие:

  • высокая сминаемость. Уже через несколько часов носки на одежде появляются складки и заломы, которые портят внешний вид;
  • отсутствие формоустойчивости. Все ткани из хлопка дают сильную усадку при влажно-тепловой обработке;
  • потеря цвета. С течением времени краски на материале тускнеют, в особенности после нахождения на ярком солнце;
  • изнашиваемость. Одежда и другие хлопчатобумажные вещи имеют небольшой срок службы, они быстро теряют привлекательность.

Компенсировать эти недостатки может невысокая цена на изделия. По мере выхода из строя одной вещи можно свободно купить новую без ущерба для кошелька.

Важно знать! Избавиться от минусов, присущих хлопковым материалам, можно, если ввести небольшое количество искусственных или синтетических волокон. Вискоза, полиэстер, эластан или капрон сделают ткани более прочными и долговечными, не умаляя их природных свойств.

Перечень самых распространенных хлопчатобумажных тканей

Существует несколько классификаций хлопковых полотен: по виду переплетения, способу отделки, сезонности и т. п. Приведем небольшой список тканей в зависимости от их назначения:

  1. Бельевые: батист, шифон, мадаполам, миткаль, канифас, интерлок, кулирка, нансук.
  2. Сорочечно-платьевые: ситец, фланель, байка, сатин, шотландка.
  3. Костюмно-пальтовые: деним, плащевка, сукно, габардин.
  4. Мебельно-обивочные: бархат, вельвет, плюш, жаккард.
  5. Постельные: бязь, сатин, поплин, перкаль, тик.
  6. Гардинные: батист, гипюр, кисея.
  7. Полотенечные: махра, вафельная ткань.
  8. Специальные: марлевка, молескин, брезент.

Следует упомянуть, что один и тот же материал может использоваться как для пошива летних платьев, так и в качестве подкладки или постельного белья. Все зависит от его прочности, толщины, степени окрашивания, рисунков и декоративной отделки.

Как и хлопчатобумажная, ткань изо льна пришла к нам из глубины веков. В льняные тоги одевались римские патриции, хитоны и плащи из этого материала носили ораторы Древней Греции. Даже на мумиях фараонов, которые жили более 10 тысячелетий тому назад, находят остатки льняных материй.

Примечательно, что славянские народности называли полотном именно ткань изо льна, ведь вся их одежда шилась только из нее. Такие рубахи, сарафаны, кафтаны и штаны отличались высокой прочностью и носились не один год.

Лен выращивают и перерабатывают в России, Беларуси и на Украине. Уникальность этого материала такова, что из него можно изготавливать и тонкий полупрозрачный батист, и грубую парусину или брезент. Льняные ткани обладают ценнейшими свойствами:

  • воздухопроницаемость. В одежде изо льна человек никогда не вспотеет;
  • тепловой комфорт. Даже в летнюю жару в льняной рубашке температура тела будет на 2 – 3 градуса ниже;
  • гигроскопичность. Ткань не только поглощает излишнюю влагу, но и отлично испаряет ее, оставаясь совершенно сухой;
  • прочность. Из всех натуральных волокон льняные обладают наибольшей крепостью и стойкостью к истиранию;
  • устойчивость к загрязнениям. Материал не накапливает в себе пыль и легко чистится и стирается;
  • Диэлектрические качества. Даже незначительное, менее 10%, присутствие льняного волокна в изделии предотвращает появление в нем зарядов статического электричества;
  • износостойкость. Ткань долгое время не теряет своей привлекательности;
  • безопасность. Льняные изделия не излучают токсинов и не провоцируют аллергию и другие заболевания.

Важный факт! Лен является природным антисептиком. Замечено, что рана, покрытая льняным холстом, заживает в несколько раз быстрее. Недаром в качестве шовного материала при хирургических операциях используют нити изо льна.

Самым большим недостатком таких тканей является высокая сминаемость при носке. И хотя их можно гладить даже очень горячим утюгом, на то, чтобы разутюжить все заломы, уходит слишком много времени.

Поэтому текстильные предприятия наряду с чистольняными полотнами выпускают смесовые, с добавлением небольшого количества хлопка или синтетических волокон. Такие материалы не мнутся и хорошо поддаются драпировке, образуя красивые, ровно спадающие складки. Самыми популярными сочетаниями являются лен и капрон, лен с лавсаном и лен с нитроном.

Виды льняных тканей

По типу отделки материалы изо льна могут быть суровыми, имеющими природный серо-желтоватый цвет, отбеленными, крашеными или пестроткаными. Их получают при помощи саржевого, полотняного, мелкоузорчатого и других переплетений.

Кроме того, льняные полотна можно разделить и по назначению. Чаще всего выделяют такие группы:

  1. Плательно-костюмные. Из них шьют сарафаны, брюки, рубашки, юбки и другие изделия.
  2. Постельно-бельевые. Простыни, пододеяльники, наволочки, наперники.
  3. Столовые. Скатерти, салфетки, полотенца-рушники.
  4. Технические. Мешки, парусина, канаты, веревки, брезент, бортовка.

Льняные ткани довольно капризны в пошиве. Легкие полотна способны сползать с раскроечного стола, а плотные тяжело разрезаются ножницами. И те и другие сильно сыплются и дают значительную усадку при влажно-тепловой обработке. Поэтому прежде чем взять льняную ткань в пошив, ее обязательно следует декатировать – увлажнить и высушить.

Выращивать коноплю и делать из нее ткань люди научились в глубокой древности. Уже тогда они оценили высокую прочность, которой обладают изделия из этого растения, и другие, не менее важные качества:

  • гигроскопичность. Полотно может впитать в себя влаги в пять раз больше собственного веса;
  • поддержание теплообмена. В одежде из конопляной ткани уютно и в зимние морозы, и в летний зной;
  • безопасность. Материал не только не вызывает раздражение кожи и аллергию, но сам способен уничтожать многие микробы и бактерии, опасные для человека;
  • стойкость к ультрафиолету. Конопля блокирует вредные для организма излучения более чем на 90%;
  • долговечность. Знатоки говорят, что вещи из конопляной ткани скорее надоедят, чем придут в негодность.

Важный факт! Еще в начале ХХ века всемирно известная компания LEVI’S, заинтересовавшись уникальными свойствами конопли, наладила выпуск джинсов из этой ткани. Однако начавшаяся борьба с наркотиками не позволила идее получить распространение.

В настоящее время вновь начато производство конопляного полотна из безнаркотических видов растения. Ткань хэмп (название произошло от английского слова «hemp» — конопля) пользуется большой популярностью у приверженцев здорового образа жизни.

Несколько тысячелетий тому назад в Китае впервые научились разматывать из коконов шелкопрядов тончайшие волокна. Ткань, которая получалась из этих нитей, была легкой, тонкой, с блестящей переливающейся поверхностью. По закону, изданному императором, строжайше запрещалось вывозить шелк из страны, а за разглашение тайны изготовления производителю ткани грозила смертная казнь.

Однако уже в ХVII столетии вездесущие купцы стали тайком, а затем и в открытую доставлять свитки шелковых полотен в Европу. Так началось победное шествие красивейшей из тканей по всему миру.

Уже в ХХ веке после химической революции и открытия синтетических материалов стали производить искусственный шелк из ацетатного волокна. Ткань, безусловно, очень привлекательная, с гладкой блестящей поверхностью. Но свойств настоящего натурального шелка она, увы, не повторит. Ведь природный материал может похвастаться множеством уникальных качеств:

  • аэрационная способность. Ткань обладает настолько высокой воздухопроницаемостью, что кожа просто не ощущает прикосновения одежды;
  • абсолютное влаговпитывание и испарение пота;
  • терморегуляция. Уже через 10-15 минут после надевания шелковая одежда приобретает температуру тела человека;
  • гигиеничность. Ткань препятствует размножению микробов и болезнетворных бактерий;
  • износостойкость. При правильном уходе изделия из шелка могут служить более 10 лет.

Если же говорить о недостатках шелка, то главным является его высокая стоимость. Кроме этого, нелишне упомянуть и такие свойства:

  • сминаемость. В шелковом платье лучше не садиться, поскольку на ткани сразу же образуются складки и заломы;
  • нестойкость к ультрафиолету. Под воздействием ярких солнечных лучей волокна могут разрушаться, и ткань «расползется»;
  • образование разводов при попадании на материю жидкостей;
  • сложности при раскрое и пошиве, требующие наличия определенных навыков;
  • особый деликатный уход, который необходим натуральному шелку: ручная стирка с использованием специальных средств, сушка вдали от солнца и тепловых приборов, глажка при низких температурах.

Как и в других природных материалах, недостатки шелка убирают путем добавления синтетических или искусственных волокон. Чаще всего в этой роли выступают вискоза или полиэстер. Если же требуется, чтобы полотно стало более растяжимым и облегающим, то вводят небольшой процент лайкры.

Виды и применение шелковых тканей

Ассортимент шелковых тканей по сравнению с хлопковыми или шерстяными не так уж и велик. Их можно рассортировать в зависимости от назначения на следующие группы:

  1. Платьево-блузочные. Крепдешин, креп-жоржет, креп-шифон, атлас, батист, парча.
  2. Портьерные. Жаккард, гобелен, бархат, эпонтаж, тафта.
  3. Гардинные. Органза, фуляр, газ, эксцельсиор.
  4. Подкладочные. Туаль, шармез.

Интересный факт! Медики утверждают, что в волокнах натурального шелка содержатся аминокислоты, которые благотворно действуют на работу желудочно-кишечного тракта и улучшают циркуляцию крови. А значит, спать на шелковых простынях не только приятно, но и весьма полезно.

Пожалуй, среди всех природных материалов наистарейшей является шерсть. Об этом свидетельствуют наскальные рисунки эпохи неолита, найденные в пещерах на территории современной Швейцарии. На них изображен процесс изготовления шерстяных тканей при помощи примитивных приспособлений.

Полотна вырабатывают из волосяного покрова различных животных: овец, коз, кроликов, верблюдов и лам. Главным свойством тканей является высокая степень сохранения тепла, поэтому их используют для изготовления верхней одежды, а также свитеров, кофт, головных уборов, шарфов, пледов, одеял и других изделий. Помимо этого, шерстяные полотна обладают и иными, не менее важными качествами:

  • высокая эластичность. Одежда, деформируясь в процессе носки, после снятия легко возвращает первоначальный вид;
  • воздухопроницаемость. Это свойство в большей степени присуще трикотажу и легким платьевым материям;
  • гигроскопичность. У всех видов шерстяных тканей она проявляется по-разному. Некоторые, например, габардин, совсем неспособны к впитыванию влаги;
  • износоустойчивость. Сама по себе шерсть в большинстве случаев не обладает достаточной прочностью, но добавление некоторого количества синтетики сразу же делает ткань намного крепче;
  • функциональность. Практически все шерстяные полотна просто кроить и сшивать. Они не осыпаются, не скользят и легко драпируются, позволяя воплощать любые идеи;
  • безопасность. Как и другие материалы из природного сырья, шерсть не является источником аллергии или иных заболеваний.

Многих привлекает то, что шерстяные ткани не накапливают пыль и устойчивы к загрязнениям. Кроме того, они обладают способностью к выветриванию запахов, что особенно радует курильщиков.

Что касается недостатков, то здесь, как и в случае с шелком, на первый план выходят денежные вопросы: изделия из некоторых видов сырья, например, кашемира или альпака, стоят очень дорого. Не следует также забывать о том, что шерстяные вещи боятся моли и им необходимо обеспечить правильное хранение, чтобы они служили как можно дольше.

Ассортимент шерстяных тканей

Материалы из шерсти животных используют не только при пошиве одежды, но и для изготовления многих других изделий. Рассмотрим их употребление на примере некоторых известных тканей.

  1. Кашемир – элегантные пальто, пиджаки, шарфы и палантины.
  2. Фланель – детская одежда, пижамы, халаты.
  3. Габардин – куртки, плащи, рюкзаки, сумки, чемоданы.
  4. Велюр – пиджаки, костюмы, мебельная обивка, шторы.
  5. Твид – мужские и женские костюмы.
  6. Байка – демисезонные пальто, одеяла.
  7. Репс – форменная одежда.
  8. Шотландка – юбки, платья, занавески.
  9. Фетр – головные уборы, обувь, декоративные изделия.
  10. Плюш – детские игрушки, чехлы на мебель.

Важно знать! Шерстяные вещи предпочтительнее стирать вручную, используя не порошкообразные, а жидкие средства. Гладить их нужно только через хлопковую салфетку, выставив регулятор утюга на наименьшую температуру.

Минеральные ткани

Материалы, входящие в эту группу, получают путем переработки горных пород, содержащих большое количество кальция, магния, железа и алюминия. Такие ткани применяются в производстве теплостойких технических изделий: транспортерных лент, пароизоляционных покрытий и т. п.

Поскольку минеральные волокна обладают огнеупорными свойствами, их добавляют в ткани, из которых шьют спецодежду для пожарных и работников металлургических предприятий. Но носить такие изделия долгое время не рекомендуется, так как асбестовые полотна способны излучать вредные для организма вещества.

Сейчас все больше потребителей предпочитают покупать только натуральные ткани. Изготовленные из биологически чистого сырья, они наполнены живительной энергией самой природы, которой щедро делятся с людьми.

,

ВОПРОСЫ

Для подготовки к экзамену по дисциплине «Товароведение и экспертиза

текстильных, швейных и трикотажных товаров»

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Натуральные волокна растительного происхождения: получение, строение, химический состав, основные свойства, применение.

По происхождению волокнообразующего вещества натуральные волокна подразделяют на три подкласса: растительного, животного и минерального происхождения.

Натуральные волокна растительного происхождения:

Хлопок - это волокна, покрывающие семена растений хлопчатника. Хлопчатник - однолетнее растение высотой 0,6-1,7 м, произрастающее в районах с жарким климатом. Основным веществом (94-96 %), из которого состоит хлопковое волокно, является целлюлоза. Хлопковое волокно нормальной зрелости под микроскопом имеет вид плоской ленточки со штопорообразной извитостью и с каналом, заполненным внутри воздухом. Один конец волокна со стороны его отрыва от семени хлопчатника открыт, другой, имеющий коническую форму, закрыт.

Количество волокна зависит от степени его зрелости.

Хлопковым волокном присуща извитость. Волокна нормальной зрелости имеют наибольшую извитость - 40-120 извитков на 1 см.

Длина хлопковых волокон колеблется от 1 до 55 мм. В зависимости от длины волокон хлопок делят на коротковолокнистый (20-27 мм), средневолокнистый (28-34 мм) и длинноволокнистый (35-50 мм). Хлопок длиной менее 20 мм называют непрядимым, т. е. из него невозможно выработать пряжу. Между длиной и толщиной хлопковых волокон существует определенная зависимость: чем длиннее волокна, тем они тоньше. Поэтому длинноволокнистый хлопок называют и тонковолокнистым, он имеет толщину 125-167 миллитекс (мтекс). Толщина средневолокнистого хлопка составляет 167-220 мтекс, коротковолокнистого - 220- 333 мтекс.

Толщина волокон выражается через линейную плотность в тексах. Текс показывает, сколько граммов весит отрезок волокна длиной в 1 км. Миллитекс = мг/км.

От длины и толщины волокон зависит выбор системы прядения (получения пряжи), что в свою очередь влияет на качество пряжи и ткани. Так, из длинноволокнистого (тонковолокнистого) хлопка получают тонкую, ровную по толщине, с малой ворсистостью, плотную, прочную пряжу 5,0 текс и выше, используемую для изготовления высококачественных тонких и легких тканей: батиста, маркизета, вольты, сатина гребенного и др.



Из средневолокнистого хлопка изготовляют пряжу средней и выше средней линейной плотности 11,8-84,0 текс, из которой вырабатывают основную массу хлопчатобумажных тканей: ситцы, бязи, миткали, сатины кардные, вельветы и др.

Из коротковолокнистого хлопка получают рыхлую, толстую, неровную по толщине, пушистую, иногда с посторонними примесями пряжу - 55-400 текс, используемую для производства фланели, бумазеи, байки и др.

Хлопковое волокно обладает многочисленными положительными свойствами. Оно имеет высокую гигроскопичность (8- 12 %), поэтому хлопчатобумажные ткани обладают хорошими гигиеническими свойствами.

Волокна достаточно прочные. Отличительной особенностью хлопкового волокна является повышенная прочность на разрыв в мокром состоянии на 15-17 %, что объясняется увеличением площади поперечного сечения волокна вдвое в результате его сильной набухаемости в воде.

Хлопок имеет высокую термостойкость - разрушение волокон до 140°С не происходит.

Хлопковое волокно более стойкое, чем вискозное и натуральный шелк, к действию света, но по светостойкости уступает лубяным и шерстяным волокнам. Хлопок обладает высокой устойчивостью к действию щелочей, что используется при отделке хлопчатобумажных тканей (отделка - мерсеризация, обработка раствором едкого натра). При этом волокна сильно набухают, усаживаются, становятся неизвитыми, гладкими, стенки их утолщаются, канал суживается, прочность повышается, блеск усиливается; волокна лучше окрашиваются, прочно удерживая краситель. Из-за малой упругости хлопковое волокно имеет высокую сминаемость, большую усадку, низкую стойкость к воздействию кислотой. Хлопок применяется для производства тканей разного назначения, трикотажа, нетканых полотен, гардинно-тюлевых и кружевных изделий, швейных ниток, тесьмы, шнурков, лент и др. Хлопковый пух применяют в производстве медицинской, одежной, мебельной ваты.



Лубяные волокна получают из стеблей, листьев или оболочек плодов различных растений. Стеблевыми лубяными волокнами являются лен, пенька, джут, кенаф и др., листовыми - сизаль и др., плодовыми - койр, получаемый из покрова скорлупы кокосовых орехов. Из лубяных волокон наибольшую ценность представляют льняные.

Лен - однолетнее травянистое растение, имеет две разновидности: лен-долгунец и лен-кудряш. Из льна-долгунца получают волокна. Основным веществом, из которого состоят лубяные волокна, является целлюлоза (около 75 %). К сопутствующим веществам относятся: лигнин, пектиновые, жировосковые, азотистые, красящие, зольные вещества, вода. Льняное волокно имеет четыре-шесть граней с заостренными концами и характерными штрихами (сдвигами) на отдельных участках, возникшими в результате механических воздействий на волокно при его получении.

В отличие от хлопкового льняное волокно имеет сравнительно толстые стенки, узкий канал, закрытый с обоих концов; поверхность волокна более ровная и гладкая, поэтому льняные ткани меньше, чем хлопчатобумажные, загрязняются и легче отстирываются. Эти свойства льна особенно ценны для бельевых полотен. Льняное волокно уникально и тем, что при высокой гигроскопичности (12 %) оно быстрее других текстильных волокон поглощает и выделяет влагу; оно прочнее, чем хлопковое, удлинение при разрыве - 2-3 %. Содержание в льняном волокне лигнина делает его устойчивым к действию света, погоды, микроорганизмов. Термического разрушения волокна не происходит до + 160°С. Химические свойства льняного волокна аналогичны хлопковому, т. е. оно устойчиво к действию щелочей, но не устойчиво к кислотам. В связи с тем, что льняные ткани имеют свой естественный достаточно красивый шелковистый блеск, мерсеризации их не подвергают.

Однако льняное волокно сильно сминается из-за низкой упругости, трудно отбеливается и окрашивается.

Благодаря высоким гигиеническим и прочностным свойствам из льняных волокон получают бельевые ткани (для нательного, столового, постельного белья), летние костюмно-платьевые ткани. При этом около половины льняных тканей вырабатываются в смеси с другими волокнами, значительная часть которых приходится на полульняные бельевые ткани с хлопчатобумажной пряжей по основе.

Из льняных волокон изготавливают также парусины, пожарные рукава, шнуры, обувные нитки, а из очесов льна - более грубые ткани: мешочные, холсты, брезенты, парусины и др.

Пеньку получают из однолетнего растения конопли. Из волокон вырабатывают канаты, веревки, шпагаты, упаковочные и мешочные ткани.

Кенаф, джут получают из однолетних растений семейства мальвовых и липовых. Из кенафа и джута вырабатывают мешочные и тарные ткани; используют для транспортирования и хранения влагоемких товаров.

Ниже дана схема классификации волокон , идущих на изготовление текстильных изделий.

Как видно из этой схемы, значительная часть волокон относится к натуральным.

НАТУРАЛЬНЫЕ ВОЛОКНА


Натуральные текстильные волокна , представляющие основное сырье для текстильной промышленности, создаются природой . Они бывают растительного и животного происхождения, каждые из которых имеют свои особенности по внешнему виду, качеству и другим данным.

НАТУРАЛЬНЫЕ ВОЛОКНА РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ

Хлопковое волокно . Наибольшее количество волокон растительного происхождения получают из хлопчатника. Хлопок является основным текстильным волокном. Половина общего годового количества текстильного волокна в мировом масштабе падает на хлопок. Он возделывается более чем в 50 странах мира.
Хлопчатник - многолетнее теплолюбивое растение . Хлопчатник представляет собой кустарник высотой до 1 м и более. Каждый год после цветения на кустах хлопчатника образуются плоды - коробочки, в которых находятся семена , покрытые волосками. На каждом семени развивается 7-15 тыс. волосков. Это и есть хлопковые волокна. Длина волокна хлопка от 12 до 60 мм. Чем длиннее волокна, тем лучшего качества получаются пряжа и ткани.
После созревания коробочки раскрываются, и их собирают ручным способом или с помощью машин. С хлопкозаготовительных пунктов хлопок-сырец доставляют на хлопкоочистительные заводы, где хлопок очищают - отделяют волокна от коробочек , семян и различных сорных примесей, т. е. осуществляют его первичную обработку. Очищенный хлопок прессуют в кипы и отправляют на прядильные предприятия для дальнейшей переработки.
Хлопковое волокно - дешевое сырье для получения прочной, тонкой, ровной пряжи. Ткани, вырабатываемые из этого волокна, хорошо окрашиваются и легко подвергаются различной отделке. Волокна хлопка обычно бывают белого или бурого цвета. Однако в настоящее время учеными уже выведены сорта цветного хлопка. Это имеет не только научную значимость, но в будущем приобретет экономическую ценность .
Лубяное волокно . Натуральные текстильные волокна вырабатываются также из стеблей и листьев некоторых растений. В различных странах существует большое количество растений (лен , конопля, джут, крапива , канатник, кендырь, рами и т. д.), из которых получают лубяные волокна. Наиболее тонкими, мягкими и гибкими среди них являются волокна льна. Из этих волокон создают пряжу, а потом красивые, прочные, мягкие ткани. Существует несколько групп льна: лен-долгунец, лен-межеумок, лен-кудряш и др. Самые длинные волокна (длина волокна зависит от длины стебля растения) получают из льна-долгунца, так как стебли его достигают длины 80-100 см. Это высококачественное прочное волокно. Лен-кудряш дает низкокачественное волокно (паклю). Волокна льна-межеумка используются как техническое волокно. Для текстильной промышленности наибольшую ценность представляет лен-долгунец .
Созревшие стебли льна выдергивают из земли вместе с корнями, чтобы сохранить длину волокон. Этот процесс называется тереблением. Раньше его выполняли вручную, а теперь с помощью льнокомбайнов и теребильных машин. Стебли льна освобождают от семян на льномолотилках. Такие очищенные стебли называют соломкой. Соломку вымачивают в водоемах или специальных бассейнах. Вымоченные стебли льна называют трестой. Часть стебля льна составляет луб , находящийся под корой (кострой). В нем в виде тонких связок расположены лубяные волокна. Получение льняного волокна из стеблей растения осуществляется на льнозаводах. Существует специальная технология отделения волокон от древесины (костры) стебля и дальнейшей обработки полученного сырья. Вымоченные стебли сушат и подвергают механической обработке. Их мнут, треплют, чтобы отделить волокно от древесины стебля и других тканей. Затем льняные волокна отбеливают, так как до этой операции они имеют светло-желтый цвет, переходящий в стальной.
Льняные волокна отличаются большой прочностью и крепостью , хорошо окрашиваются, лучшие сорта их обладают шелковистым блеском .
Волокна других растений - жесткие, грубые . Они идут на изготовление веревок, канатов, мешковины, дешевых обивочных тканей, холста, парусины. Например, волокно конопли (пенька) похоже на льняное как по цвету, так и по другим признакам. Однако оно не такое мягкое, поэтому идет на изготовление парусины, канатов, шпагата, мешковины .
Лубяные волокна добывают не только из стеблей , но и из листьев некоторых растений, например из листьев текстильных бананов, текстильных агав . Для производства изоляционного материала используют волокна торфяного мха.

НАТУРАЛЬНЫЕ ВОЛОКНА ЖИВОТНОГО ПРОИСХОЖДЕНИЯ

Шелковые волокна - это нити, получаемые из коконов тутового шелкопряда . На определенной стадии развития гусеница тутового шелкопряда (когда наступает время гусенице превратиться в куколку) сплетает себе кокон , который представляет собой-продолговатую яйцеобразную оболочку, состоящую из переплетенного в 40-50 слоев тончайшего шелкового волокна .
Волокно (нить) получается следующим образом : из двух отверстий, находящихся на головке ниже рта , гусеница выделяет густую жидкость, которая застывает на воздухе. Эта жидкость выделяется непрерывно и образует две нити, склеивающиеся при помощи особого вещества - серицина , тоже выделяемого гусеницей . В результате получается единая нить, из которой гусеница сплетает кокон.
В зависимости от вида шелкопряда коконы бывают белого, желтоватого, красновато-желтого цветов. Выводят шелкопрядов, которые дают коконы нежно-розового, голубого, зеленого цветов. Однако природная окраска не является очень стойкой и в дальнейшем усложняет окрашивание пряжи, поэтому волокна предварительно отбеливают. Коконы являются ценным сыры для шелковой промышленности. Чтобы получить шелковые волокна хорошего качества, т. е. чтобы нить была длинной хорошо разматывалась, коконы подвергают первичной обработке горячим воздухом или паром. Куколка при этом умерщвляется, иначе при дальнейшем развитии она превращается в бабочку и, чтобы выйти из кокона, делает в нем отверстие и портит его. Отверстия нарушают целостность нити, волокна такого кокона получаются короткие, и сырье теряет качественность. Чтобы куколка не разлагалась, коконы сушат.
Перед сматыванием шелковой нити коконы погружают в бассейны с горячей водой, обрабатывают их паром, холодный щелочными растворами. Делают это для размягчения клеящего вещества - серицина.
С одного кокона можно получить нить от 400 до 1200 метров длины , но она так тонка, что для получения прочной нити шелка-сырца необходимо соединить нити от 3 до 30 коконов в одну.
Таким образом получают шелк-сырец , который после дальнейшей обработки делается мягким, гибким и блестящим. Важным моментом является дальнейшее удаление из шелка-сырца клеящего вещества, которое не удалено полностью при первичной обработке коконов. Волокна натурального шелка очень прочны . Они хорошо окрашиваются и скручиваются.
Натуральный шелк применяется для изготовления очень прочных, красивых и нарядных текстильных изделий . Из натурального шелкового волокна изготовляют хирургически изоляционный шелк.
Шерстяные волокна получают из настриженного волосяного покрова некоторых животных (овец, верблюдов, коз, кроликов ). Шерстяные волокна получают и после переработки шерстяного тряпья.
Шерстяные волокна разных животных обладают различными качествами и свойствами . Отличается по качеству и свойствам шерсть с разных пород одного и того же вида животных. Например, из овечьей шерсти больше ценится шерсть, получаемая с тонкорунных и полутонкорунных овец. При стрижке овец шерсть снимают сплошным пластом (руном). Руно неодинаково по качеству. Шерсть наиболее высокого качества находится на лопатках, спине, животе , несколько грубее на боках и еще грубее на задней части и ногах.
Различными качествами отличаются шерстяные волокна, полученные даже от одного животного. Наибольшую ценность представляют волокна, именуемые пухом. Они тонкие, упругие, гибкие . Среди шерстяных волокон различают следующие: ость (более толстое волокно); переходный волос , который по тонине и другим свойствам занимает промежуточное место между пухом и остью; «мертвый» волос - малопрочное, жесткое, толстое волокно.
Качество шерсти зависит от времени стрижки овец . Весенняя шерсть мягче, так как в ней больше пуха, т. е. наиболее ценного волокна. В шерсти осенней стрижки пуха почти нет, поэтому и волокна жесткие, но значительно чище шерсть весенней стрижки , что дает меньше отходов.
Пряжа и различные ее свойства зависят от того, какие волокна пошли на ее изготовление. Лучшие сорта пряжи и шерстяных тканей изготовляют из пуха.
Качество шерстяных волокон определяется не только их прочностью , тониной, мягкостью, но и длиной. Длина шерстяных волокон зависит от породы овец и достигает 180 - 200 мм. Первичной обработкой шерстяного сырья является его сортировка, очистка от сора (репейника, комочков земли и др.).
Отрепление, рыхление, промывка, сушение.
Сортируют шерсть вручную . Руно раскладывают на специальных столах, разделяют его на отдельные части и по определенным нормам с учетом качества сырья подбирают шерсть в определенные партии.
Промывают шерсть в специальных составах моющих средств . Делается это для того, чтобы удалить жир, пот.
Как видно из описанного выше материала, подготовка натурального шерстяного волокна является длительным процессом .

ХИМИЧЕСКИЕ ВОЛОКНА


С развитием науки и техники появилась возможность получать химическим путем различные текстильные волокна , обладающие новыми качествами и свойствами по сравнению с натуральными волокнами. Главной причиной использования химии в получении сырья для текстильной промышленности был повышенный спрос на текстильные изделия, который не мог быть удовлетворен производством только натуральных волокон. Острая потребность в создании химических волокон обнаружилась уже в прошлом веке.
Химические волокна делятся на две группы: искусственные и синтетические.
Искусственные волокна получают из природных полимеров - хлопковой, древесной и другой целлюлозы, растительных или молочных белков путем их специальной обработки различными химическими веществами: ацетоном, азотной, уксусной, серной кислотами, аммиачным раствором окиси меди, едким натром и др. К таким волокнам относятся нитрошелк, медно-аммиачный, вискозный, ацетатный шелка.
Нитрошелковые нити при производстве тканей используются преимущественно в качестве основы. Из медно-аммиачных делают ткани без добавления волокон других видов. Вискоза по своей тонине похожа на натуральный шелк. Однако она теряет свои качества при намокании и высокой температуре , поэтому при изготовлении пряжи вискозу смешивают с другими волокнами. Очень распространен ацетатный шелк.
Синтетические волокна получают путем химической обработки различных веществ : нефти, угля, природных и попутных нефтяных газов, отходов сельского хозяйства , отходов целлюлозно-бумажной промышленности. Из этих веществ получают высокомолекулярные смолы, которые и являются исходным материалом для получения синтетических волокон. Существует специальная, очень сложная технология обработки и переработки этих смол. Сырье для синтетических волокон почти неисчерпаемо. Из синтетических волокон хорошо известны полихлорвинил, нейлон (анид), капрон, лавсан, нитрон, орлон, милан и др. Искусственным и синтетическим волокнам заранее придают определенные свойства (прочность, отношение к влаге, температуре, окраске и пр.). В настоящее время созданы самые разнообразные виды химических волокон.
Стойкость к агрессивным средам, высокая механическая прочность, эластичность и другие ценные качества сделали синтетические волокна незаменимыми для современного текстильного производства.
Получение химических волокон имеет сложную технологию. Первый этап - получение из исходных материалов химическим путем жидкой и вязкой массы - прядильной массы. Эта масса поступает в прядильную машину (так условно называют машину, на которой создается химическое волокно).
Деталь, при помощи которой в машине формируются волокна из готовой массы, называется фильерой. На одной машине может находиться 60-100 фильер. Каждая фильера представляет собой небольшой металлический колпачок с мельчайшими отверстиями. Специальными насосами прядильная масса подается в фильеру и через ее отверстия вытекает тончайшими непрерывающимися струйками, которые обрабатывают специальными химическими растворами. Эти струйки застывают и превращаются в нити - химические волокна (искусственные или синтетические), из которых вырабатывают ткани. В зависимости от вида химического волокна фильера имеет различное количество отверстий разной величины.
Особенностью создания химического волокна является то, что процесс его формирования одновременно является и его прядением . Нити получаются очень тонкие. В зависимости от качества и назначения будущей ткани определенное количество нитей скручивают в одну. После необходимой отделки (различной для каждого вида будущей ткани) нити наматывают на бобины или другие приспособления. И пряжа готова для ткацкого производства. Искусственная пряжа очень прочная, пластичная , легко деформируется.
Несколько отличается процесс получения штапельной пряжи. Для ее получения искусственные волокна нарезают кусочками (штапельками) определенной длины (по длине натуральных хлопковых или шерстяных волокон).
При изготовлении искусственного волокна для штапельной пряжи используются фильеры с большим количеством (до 3-6 тыс.) отверстий. Обычные фильеры имеют 20-50 отверстий. Поэтому изготовление штапельного волокна более экономично, чем другого химического волокна.
Штапельные волокна из-за их небольшой длины подвергают прядению, как волокна хлопка или шерсти. В результате получают пряжу, идущую на изготовление штапельного полотна.

СМЕШАННЫЕ ВОЛОКНА


Выше шла речь о создании однородных волокон, получаемых в чистом виде. Это хлопковые волокна, лубяные и др. В настоящее время широко распространено смешение волокон, что дает неограниченные возможности для получения богатейшего ассортимента пряжи, а затем и тканей.
Смешивают между собой натуральные волокна (хлопок и шерсть, хлопок и натуральный шелк, хлопок и лен) или натуральные с искусственными и синтетическими (хлопок и вискозу, лен и капрон, шерсть и нейлон).
Полушерстяные и полушелковые ткани получают не только путем смешения волокон , но и в процессе ткачества, когда в качестве нитей основы используется пряжа из одних волокон, а нити утка - из других.

Классификация текстильных волокон

Волокно - это протяженное, гибкое и прочное тело с малыми попереч­ными размерами, ограниченной длины, пригодное для изготов­ления пряжи и текстильных изделий.

Натуральные волокна, формируются в природе без непосредственного участия человека. Могут быть растительного, животного и минерального происхождения.

К химическим относятся нити и волокна, создаваемые в заводских условиях путём формирования их из природных или синтетических полимеров.

Натуральные волокна

Натуральные волокна растительного происхождения в зависимости от их расположения в растении делят на:

Семенные (получаемые из семян хлопчатника) – хлопок;

Лубяные (стеблевые) – лен, пенька, джут, кенаф, канатник, рами и др.;

Листовые (добываемые из листьев растений) – манильская пенька, сизаль и др.;

Плодовые (добываемые из скорлупы кокосовых орехов) – кокосовые волокна (койр).

Хлопком называютволокна, растущие на поверхности семян растения хлопчатника.

По виду волокно хлопка делят на средневолокнистый – длиной 30…35 мм (наиболее урожайный) и тонковолокнистый – тонкие волокна длиной 35…50 мм.

Волокно хлопка (рис. 2.2) имеет трубчатое строение. По мере созревания изменяется длина и форма волокна (извитость) и соотношение между внешним и внутренним диаметрами. Толщина стенок и извитость волокна зависят от степени зрелости (Z ), которая определяется отношением наружного (D ) и внутреннего (d ) диаметров волокна: Z D/d . Наиболее пригодными для изготовления текстильных материалов считаются волокна хлопка со степенью зрелости 2,5…3,5.


Для производства текстильных материалов применяют волокна следующей длины: до 27 мм – короткие; 27…35 мм – средние; 35…50 мм – длинные.

Хлопковое волокно до 98% состоит из -целлюлозы (), относящейся к классу полисахаридов. Кроме-целлюлозы в состав полимерного вещества волокна входят: до 1,5% низкомолекулярные фракции целлюлозы ; до 1% воска и жиры, которые расположены на наружной поверхности волокна; до 0,5% азот, зольные, белковые и другие вещества, которые расположены между надмолекулярными образованиями основного полимерного вещества.


Наличие 3-х гидроксильных групп (ОН) в элементарном звене -целлюлозы обеспечивает волокнам и материалам способность взаимодействовать с влагой.

Свойства:

высокие гигиенические свойства;

высокая прочность;

низкая кислотоустойчивость (особо сильное разрушающее воздействие на хлопковые волокна оказывают серная, соляная и азотная кислоты);

высокая щелочеустойчивость;

под действием световых лучей ухудшаются механические свойства, увеличивается жест кость и ломкость;

при увлажнении целлюлозные волокна набухают, становятся прочнее на 10-20 %;

выдерживают нагревание без изменения свойств до 150 0 С; легко воспламеняются.

Льняное волокно (-целлюлоза ) получают из растения льна-долгунца путем механического выделения волокна из стебля растения. Элементарное волокно льна имеет сильно вытянутую веретенообразную форму с узким каналом посередине (рис. 2.4) с закрытыми заострёнными концами. Волокна залегают в паренхиме коры стебля льна, который расположен между наружной покрывной тканью и слоем камбия , лежащим около слоя древесины , являющейся остовом стебля. Центральная часть стебля растения называется сердцевиной . Все слои стебля льна, от покрывной ткани до слоя камбия, называют корой стебля или лубом . Длина элементарного волокна льна колеблется в пределах от 10…24 мм, поперечник 12…20 мкм (1 мкм 10 -6 м). Элементарные волокна льна соединяются между собой в пучки при помощи срединных пластинок, состоящих из пектиновых веществ и лигнина. В пучке от 15…30 элементарных волокон, а в поперечном сечении стебля 20…25 пучков. Выделенные из стебля пучки элементарных волокон образуют технические волокна, длина которых составляет 170…250 мм, а поперечник 150…250 мкм.

Льняные волокна содержат меньше целлюлозы и больше других примесей, чем хлопок. Это затрудняет отделку льняных тканей.

Свойства:

похожи на свойства хлопковых волокон. Но льняные волокна прочнее, имеют большую светостойкость; имеют меньшую растяжимость при удлинении; большую сминаемость.

Также натуральные волокна растительного происхождения получают из рами, джута, конопли, кенафа и других растений.

Строение волокон конопли (пеньки) аналогично льняным, но элементар­ные волокна ее при той же длине более толстые и грубые. Применяют для изготовления канатов и технических тканей, а также в виде пряжи для текстильной и трикотажной промышленности. В зависимости от условий обработки волокна могут иметь зеле­ный, серый или коричневый цвет.

Джут - теплолюбивая и влаголюбивая культура семейства липовых. Комплексное волокно джута более тонкое, чем пень­ка. Основное применение джута - упаковочные ткани и мешки. Однако в последнее время предлагается использовать волокно джута для изготовления бытовых тканей - портьерных, обивочных и даже бельевых и джинсовых (в смеси с шерстью, льном, вискозным волокном и шелком).

Рами к ак и лен относится к тонкостеблевым волокнам, которое получается из стеблей многолетнего субтро­пического растения семейства крапивных. Техническое волокно рами - наиболее тонкое из всех лубяных, оно отличается высокими сорбционными свойствами. Волокна рами хорошо окрашиваются, прочны и эластичны, имеют красивый внешний вид. Рами используют в чистом виде и в смесках с хлопком для изготовления одежных и бельевых тканей. Недостатком рами является возможность аллерги­ческих реакций в виде зуда и жжения при контакте с кожей.

Волокна крапивы двудомной прочны, шелковисты, имеют высокую белизну и блеск. Используются для производства грубых тканей и веревок. Но пока не разработана экономически выгодная технология промышленного производства.

Шерстяным волокном, шерстью , называют волосяной покров животных – овец, коз, лам, верблюдов и других млекопитающих.

Шерсть, состриженную, счесанную или собранную с животных при линьке, называют натуральной . Шерсть, снятую со шкур, называют заводской или шубной . Шерсть, полученную при разделении на волокна шерстяного лоскута или тряпья, называют восстановленной.

Волокно шерсти состоит из чешуйчатого – 1, коркового – 2 и сердцевинного – 3 слоев (рис. 2.5). Чешуйчатый слой выполняет защитную функцию. Корковый слой состоит из веретёнообразных клеток, состоящих из фибрилл белка кератина, соединенных между собой межклеточным веществом. Сердцевина появляется в волокне шерсти при его росте и состоит из высохших пластинчатых клеток, расположенных перпендикулярно фибриллам коркового слоя. Расстояние между пластинчатыми клетками заполнено воздухом. В зависимости от зрелости и характера строения шерстяное волокно делят на четыре типа: пух, переходный волос, ость, мертвый волос.

Пух – состоит из чешуйчатого и коркового слоёв; волокно короткое, сильно извитое; толщина волокна – 14…30 мкм. Покрыто кольцеобразными чешуйками, которые представляют собой ороговевшие клетки.

Переходный волос  содержит чешуйчатый, корковый слои и слаборазвитую сердцевину, имеет малую извитость, толщина – 25…35 мкм.

Ость – имеет все три слоя, толщина – 40…60 мкм. Толще и грубее пуха, почти не имеет извитости. Покрыт пластинчатыми чешуйками.

Мертвый волос  имеет чешуйчатый и сердцевинный слои, корковый слой практически отсутствует, толщина  более 60 мкм. Наиболее грубое неизвитое волокно, жесткое, ломкое, плохо окрашивается.

Для производства текстильных полотен наибольшее применение нашли шерстяные волокна толщиной: 14…25 мкм  тонкие волокна, 25…31 мкм  полутонкие волокна, 31…40 мкм  полугрубые волокна.

Мертвый волос в текстильном производстве не применяется из-за его высокой хрупкости и ломкости.

Длина волокон тонкой шерсти лежит в пределах 50…80 мм, а грубой 50…200 мм.

Основным полимерным веществом шерсти (до 90%) является белок кератин .

Макромолекулы, агрегируясь, образуют элементарные нитевидные структуры спиралевидной формы – прото - и микрофибриллы . В результате дальнейшего взаимодействия микрофибриллы агрегируются в фибриллы , которые образуют волокна: шерсти, шелка, коллагена и др. Наличие у белков таких групп, как NH, OH и других, обеспечивает материалам, изготовленных из белковых волокон, способность взаимодействовать с влагой.

Свойства:

малая сминаемость;

в мокром состоянии на 30 % теряет прочность;

высокая свойлачиваемость из-за чешуйчатой поверхности;

низкая теплопроводность; самая высокая гигроскопичность;

достаточно высокая устойчивость к действию света%;

низкая термостойкость – при температуре 100-110 0 С волокна становятся ломкими и жесткими, снижается прочность.


Шёлковые волокна получают из коконов тутового или дубового шелкопряда. Тутовый шелкопряд в своем развитии проходит 4 стадии: яички (грена), гусеница, куколка, бабочка.

Бабочка шелкопряда откладывает от 400 до 600 яичек, из которых появляются гусеницы. Через 28-34 дня гусеница завивает кокон. В коконе гусеница превращается в куколку, а куколка – в бабочку. Бабочка, проделав в коконе отверстие, выходит наружу. Затем после спаривания самка откладывает грену и погибает.

В момент образования кокона (рис. 2.7 а) гусеница выпускает через шелкоотделительные железы две тонкие нити 1 из белка фиброина , которые соединяет между собой веществом 2, состоящим из белка серицина (рис.2.7 в ). Поперечный срез нитей шёлка изображен на рис. 2.7 б .

Шёлковое волокно имеет монолитную структуру и может достигать в длину нескольких сотен метров. Толщина шелкового волокна составляет 10-15 мкм. Шелк дубового шелкопряда более прочный, но менее мягкий и ровный, чем шелк тутового шелкопряда.

Свойства:

высокая гигроскопичность;

высокая прочность, мягкость, шелковистость;

в мокром состоянии на 15 % теряет прочность;

высокая устойчивость к кислотам и низкая – к щелочам;

самая низкая светостойкость (нельзя сушить на солнце!);

низкая термостойкость;

высокая усадка.

Асбест (греч. asbestos, буквально ‒ неугасимый, неразрушимый), название, объединяющее группу тонковолокнистых минералов из класса силикатов, образующих агрегаты, сложенные тончайшими, гибкими волокнами. Этими свойствами обладают минералы двух групп ‒ серпентина и амфибола, известные под названием хризотил-асбеста и амфибол-асбеста, различные по атомной структуре. По химическому составу асбестовые минералы ‒ водные силикаты магния, железа и отчасти кальция и натрия. Наибольшее значение имеет хризотил-асбест (95%).

Хризотил-асбест‒ минерал из группы серпентина, состав Mg 6 (OH) 8 ; Цвет в куске зеленовато-серый. Блескшелковистый. Твердость по минералогической шкале 2‒2,5, плотность 2500 кг/м 2 . Волокна гибки, обладают высокой прочностью на разрыв [около 3 ГН/м 2 (300 кгс/мм2)], высокой огнестойкостью (t пл около 1500°C), плохо проводят тепло и электричество. Длинаволокон варьирует от долей мм до 50 мм, редко более, толщина‒ доли мкм. В РФ добывается на Урале.

Язык проекта:

Натуральные волокна Волокна состоят из непряденых нитей материала или длинных тонких отрезков нити. Волокна используются в природе как животными так и растениями, для удержания тканей (биологических). Натуральные волокна - это волокна, которые существуют в природе в готовом виде, они образуются без непосредственного участия человека. В эту группу входят волокна растительного, животного и минерального происхождения. Основными признаками для классификации являются: химический состав волокон и область их происхождения.

Натуральные волокна

Шелк - состоит из волокна животного (белкового) происхождения. Шелковые нити получают из коконов гусениц тутового шелкопряда. К шелковой группе относятся такие ткани, как - вуаль, шифон, крепдешин, атлас чесуча, креп, креп-жоржет, туаль, фай, тафта, парча, фуляр и др. Традиционно, шелк считается одним из самых дорогих разновидностей ткани. Изделия из шелковой ткани очень легкие, прочные, красивые. Имеют приятный блеск, хорошо регулируют температуру тела. К недостаткам шелка можно отнести то, что ткань сильно мнется и чувствительна к действию ультрафиолетовых лучей. Часто к натуральному шелковому волокну добавляют другого рода волокна для получения новых интересных фактур и различных эффектных переплетений. Стоит отметить, что также выпускается искусственные и синтетические шелковые ткани.

Шерсть - натуральные волокна животного (белкового) происхождения. В качестве сырья используется волосяной покров животных - овечья шерсть, верблюжья шерсть, шерсть ламы, кролика и др. В группу шерстяных тканей входят: саржа, сукно, твид, бостон, коверкот, шевиот, дюветин и пр. Шерсть различных животных отличается по качеству, свойствам и области применения. Единственная общая характеристика всех типов шерсти - это исключительное качество удерживать тепло. Значительную массу шерсти (94-96%) для предприятий текстильной промышленности поставляет овцеводство. Натуральные шерстяные ткани мягкие, эластичные, лёгкие, воздухопроницаемые. Толщина тканей может быть разной, существуют как толстые, так тонкие шерстяные материи. Ткани из шерсти практически не сминаются.

Натуральное волокно минерального происхождения: асбест

натуральный волокно минеральный растительный

Асбест (греч.неразрушимый) - собирательное название группы тонковолокнистых минералов из класса силикатов. В природе это агрегаты с пространственной структурой в виде тончайших гибких волокон. Применяется в самых различных областях, например в строительстве, автомобильной промышленности и ракетостроении. По химическому составу асбест представляет собой водные силикаты магния, железа, кальция и залегает в горных породах в виде жил и прожилок.

Натуральные волокна растительного происхождения

Основным веществом, составляющим волокна растительного происхождения, является целлюлоза. Это твердое трудно растворимое вещество, состоит из звеньев С6Н10О5. Помимо целлюлозы в растительных волокнах присутствуют воски, жиры, белковые, красящие вещества и др.

Хлопок - это натуральное волокно растительного происхождения. Производят хлопок из волокон семян растений хлопчатника. На основе хлопка производятся: сатин, батист, марлевка, ситец, деним, фланель, канифас, тик, бязь, маркизет, перкаль, нансук, органди, пике, поплин, вуаль и прочие ткани. Достоинствами хлопчатобумажной ткани являются: прочность, высокая износостойкость, устойчивость к действию щелочей и эластичность. Ткань теплая, мягкая и приятная на ощупь, хорошо впитывает влагу, не электризуется. К недостатком ткани относят высокуюсминаемость из-за малой доли упругой деформации. Иногда к тканям хлопчатобумажной группы добавляют вискозу, и тогда на их матовой поверхности появляется изумительный блеск либо узор.

Лен - это натуральное и экологически чистое волокно растительного происхождения. Сырьем для производства льна служит стебель травянистого растения с одноименным названием. Льняные ткани гигиеничные, прочные, мягкие на ощупь, с хорошими влаго- и воздухопроницаемыми свойствами. Однако, ткани изо льна из-за незначительной растяжимости и слабой упругости волокна чрезвычайно сильно мнутся и плохо гладятся, а также изрядно садятся при стирки. Чаще всего изделия из льняной ткани выпускаются естественного цвета (от серого до бежевого). Имеют приятный блеск.

Джут издавна используется для изготовления веревок и мешковины, а также в качестве натуральной основы для ковров и линолеума. Джутовое волокно получают из одноименного растения, произрастающего главным образом в Индии и Бангладеш. Тканое джутовое напольное покрытие мягче, чем кокосовое или сизалевое, поэтому подходит только для помещений, где нет оживленного движения, например спален. Здесь текстура изделий из джута станет дополнительным преимуществом - по ним приятно ходить босиком.

Кокосовое волокно (койр) получают из орехов кокосовой пальмы. Из койра делают прочные и упругие напольные покрытия - ковры, циновки и придверные коврики. Кокосовое волокно отличается чрезвычайной износостойкостью, но оно колючее и с трудом поддается окраске.

Пенька (волокна стеблей конопли) необычайно прочна, не подвержена гниению и не боится соленой воды, а также не выцветает и не портится на ярком свету. В конопле, выращиваемой для текстильной промышленности, отсутствуют активные наркотические компоненты. Она великолепно разрастается и не нуждается в химической защите или подкормке. Из нее делают пеньку и грубое сукно. В сочетании с другими, более мягкими натуральными волокнами конопля является сырьем для легких и удобных тканей, которые можно использовать самыми разными способами

Волокна минерального происхождения

К волокнам минерального происхождения относятся асбесты (наиболее широко используют хризолит-асбест), расщепляя которые получают технические волокна. Перерабатывают их (обычно в смеси с 15-20% хлопка или химических волокон) в пряжу, из которой изготовляют огнезащитные и химически стойкие ткани, фильтры и др. Непрядомое короткое асбестовое волокно используют в производстве композитов (асбопластиков), картонов и др.

Объём мирового производства природных волокон в 1980 г. составил (млн. т/год): хлопок – 14,1, лен – 0,6, джут – 3,0, прочие грубостебельные и жесткие – 1,0, шерсть (мытая) – 1,6, шелк-сырец – 0,05.

Химические волокна

Полиамидные волокна

Полиамидные волокна, во многих отношениях превосходящие по качеству все природные и искусственные волокна, завоевывают все большее и большее признание. К наиболее распространенным полиамидным волокнам, выпускаемым промышленностью, относятся капрон и нейлон. Сравнительно недавно получено полиамидное волокно энант.

Капрон – полиамидное волокно, получаемое из поликапроамида, образующегося при полимеризации капролактама (лактама аминокапроновой кислоты):

Исходный капролактам практически получается двумя путями:

1. Из фенола:

Окисление циклогексана проводят кислородом воздуха в жидкой фазе при 130-140o С и 15-20 кгс / см2 в присутствии катализатора – стеарата марганца. При этом образуются циклогексанон и циклогексанол в соотношении 1:1.

Достоинства и недостатки натуральных волокон.

Достоинства:
- Не накапливают статического электричества (не электролизуются)
- Паропроницаемы
- Воздухопроницаемы
- Гигроскопичны (т.е. хорошо впитывают влагу)
- Имеют высокие теплоизоляционные свойства (не жарко летом, не холодно зимой)
- Престижны и обычно более дороги
Недостатки:
- Легко мнутся
- Плохо держат краску (редко могут быть окрашены в яркие цвета и могут линять при стирке)
- Деформируются при носке и грубой стирке (растягиваются, меняют форму). Могут сесть при неправильной стирке.
- Впитывают влагу (при этом заметно темнеют) и долго сохнут
- Могут пилинговаться (появляются «катышки»), однако это определяется в большей степени особенностями ткани, а не волокна.

Достоинства и недостатки синтетических волокон.


Достоинства:
- Обычно имеют низкую сминаемость
- Позволяют добиться более эффектной выделки и окраски (блеск, глянец, яркие цвета)
- Мало деформируются при носке (локти, колени)
- Мало деформируются после стирки
- Могут быть эластичными, что позволяет подчеркивать фигуру и даже немного «формировать» ее
- Быстро сохнут и не темнеют от влаги
- Меньше линяют и выгорают
Недостатки:
- Синтетика обычно хуже, чем натуральные ткани пропускает влагу и воздух (более низкая паро- и воздухопроницаемость).
- Многие покупатели утверждают, что синтетика вызывает раздражения или аллергию на коже, однако это довольно редкое явление и чаще всего связано с трением жесткой тканью.
- Синтетика электролизуется. Этот недостаток легко исправить с помощью аэрозольных антистатиков или опаласкивателей
- Низкие теплозащитные свойства

Исследование на гигиенические свойства

Качества одежды зависят от многих условий и в первую очередь от свойств ткани. Взаимодействие между кожей ребенка и тканями одежды определяется гигиеническими свойствами ткани: толщиной, массой, воздухо-и паропроницаемостью, гигроскопичностью, влагоёмкостью, гидро- и липофильностью, гидрофобностью, а также теплопроводностью и тд.

Теплопроводность характеризует теплозащитные свойства материалов: чем она ниже, тем теплее материал.

Толщина тканей измеряется в миллиметрах и влияет на теплозащитные свойства ткани (например, батист-0.1 миллиметра, драп-5 мм, натуральный мех-30-50 мм).В материалах имеющих большую толщину содержится больше воздуха, который обладает низкой теплопроводностью. Следовательно, чем толще материал, тем он теплее.

Масса ткани измеряется в граммах по отношению к единице площади материала (1 кв. м или 1 кв. см) (например, драп-77 г/кв. м, натуральный мех-1000 г/кв. м). Гигиенически оптимальной является ткань с минимальной массой и сохранением всех необходимых ей свойств.

Воздухопроницаемость - измеряется в куб. дм.и означает способность материалов пропускать воздух через 1 кв. м в секунду путем фильтрации через поры. (например, шелк натуральный-341 куб. дм./ кв. м в секунду, капрон-125 куб. дм./кв. м в секунду, мадаполам х/б-111 куб. дм./кв. м). Поверхностный слой зимней и осенней одежды должен иметь низкую воздухопроницаемость в целях защиты от холодного воздуха. Летняя одежда должна обладать максимальной вентилируемостью, то есть большой воздухопроницаемостью.

Паропроницаемость - измеряется в граммах водяного пара, проходящего за 1 час через 1 кв. м ткани, и определяет способность материалов пропускать через себя водяные пары, постоянно образующиеся в пододёжном пространстве, путем диффузии их через волокна. (например, мадаполам х/б-16,2 г/кв. м в час, шелк натуральный- 4,62 г/кв. м в час, капрон- 1,09 г/кв. м в час). В местностях с жарким климатом, когда теплоотдача осуществляется в значительной мере за счет испарения, одежда должна иметь наибольшуюпаропроницаемость.

Гигроскопичность - характеризует способность тканей поглощать водяные пары, выражается в % (например, батист, вольта, ситец > 90%, мадаполам х/б – 18%, драп облегченный – 16,5%, шерсть – 14%, репс – 7-8%, репс с водоотталкивающей пропиткой – 1,2%, капрон – 5,7%, лавсан – 0,5%). Хорошая гигроскопичность является положительным свойством материалов, используемых для внутренних слоев одежды; способствует удалению пота с поверхности кожи. Гигроскопичность тканей, применяемых для верхних слоев зимней и демисезонной одежды, должна быть минимальной, что предотвращает её промокание при атмосферных осадках и снижение теплозащитных свойств.

Влагоёмкость – определяет способность тканей впитывать воду при погружении в неё, выражается в %. Свойства ткани сохранять значительную часть пор свободными после увлажнения имеет большое значение, т.к. при этом достигается определенный уровень воздухопроницаемости и меньше изменяется тепловые свойства данного материала.

Гидрофильность – отражает способность ткани быстро и полно впитывать влагу, выражается в % (например, батист, вольта, ситец > 90%, репс с водоотталкивающей пропиткой – около 0%). Высокая гидрофильность должна быть у тканей, непосредственно соприкасающихся с кожными покровами и поглощающих водяные пары с кожи.

Гидрофобность (“несмачиваемость”) – свойство противоположное гидрофильности. Высокая гидрофобность должна быть у ткани, образующих верхний слой одежды и защищающих её от снега, дождя, тумана.

Липофильность – характеризует способность тканей впитывать в себя жир с поверхности кожи, выражается в %. Высокие её свойства являются отрицательным свойством, присущим в основном синтетическим тканям, т.к. капельки жира заполняют воздушные пространства между волокнами и ухудшают тем самым физико-гигиенические свойства материалов.

Намокаемость - способность тканей впитывать капельно-жидкую влагу. Очень ценные свойства для полотенец, простыней, белья, сорочек, платьев.

Характеристикой намокаемости тканей является их водопоглощаемость и капиллярность.

Водопоглощаемость тканей характеризуется количеством поглощенной воды в процентах к массе ткани при непосредственном соприкосновении ее с водой.

Капиллярность тканей характеризуется высотой, на которую поднимается смачивающая жидкость по капиллярам.

Водоупорность - свойство ткани сопротивляться смачиванию. Большое значение это свойство имеет для специальных тканей (брезентов, парусин, палаточных), плащевых тканей, пальтовых и костюмных шерстяных тканей.

Водоупорность ткани зависит от ее структуры и характера отделки. У тканей плотных, а также у сильно уваленных и обработанных водоупорными пропитками водоупорность выше.

Воздухопроницаемость - это свойство ткани пропускать воздухи обеспечивать вентилируемость одежды.

К тканям различного назначения предъявляются различные требования воздухопроницаемости. Сорочечно-платьевые и бельевые ткани должны обладать наибольшей воздухопроницаемостью. Ткани для верхней и зимней одежды должны обладать ограниченной воздухопроницаемостью, должны быть ветростойкими и не допускать переохлаждения тела человека в результате проникания чрезмерного количества холодного воздуха в пододежное пространство.

Воздухопроницаемость тканей зависит от наличия пор, которых у тканей тонких, малоплотных и неаппретированных больше, а у толстых, плотных, аппретированных - меньше. Проникание воздуха через ткань зависит от скорости движения человека или скорости ветра.

Теплозащитные свойства тканей - это их способность сохранять тепло, выделяемое телом человека. Теплозащитные свойства зависят от вида и качества волокнистого материала и структуры ткани.

Все волокна имеют какой-то коэффициент теплопроводности (наибольшим - целлюлозные волокна, особенно льняное; низким - белковые волокна; шерсть всегда считалась «теплым» волокном. По уменьшению теплопроводности волокна можно расположить с следующей последовательности: капроновые, искусственные, лен, хлопок, натуральный шелк, шерсть, нитрон. Кроме теплопроводности волокон, имеет значение их толщина, длина, извитость, упругость. Лучшими теплозащитными свойствами будут обладать ткани невысокой объемной плотности (0,2-0,35 г/см 3).

Большое значение для характеристики теплозащитных свойств имеют толщина и плотность ткани. Чем выше эти показатели, тем выше теплозащитные свойства ткани.

Пылеемкость и пылепроницаемость . Пылеемкость ткани - ее способность удерживать пыль и другие загрязнения.

Пылеемкость ткани зависит от структуры ткани, вида волокон и характера отделки ткани. Ткани плотные, с гладкой поверхностью загрязняются меньше, чем рыхлые, шероховатые. Больше всего загрязняются шерстяные ткани, потому что волокна шерсти имеют чешуйчатый слой, способствующий скоплению частиц пыли. Хлопчатобумажные ткани также легко загрязняются вследствие извитости волокон хлопка. Шелковые и льняные ткани загрязняются меньше, это объясняется тем, что волокна шелка и льна имеют гладкую поверхность, слабо удерживающую загрязнения. Мало загрязняются также аппретированные ткани.

Пылепроницаемость ткани - способность ее пропускать пыль в пододежный слой. Чем толще и плотнее ткань, тем меньше ее пылепроницаемость; это особенно важно при изготовлении спецодежды для рабочих пыльных производств (шахт, цементных заводов, мукомольных производств).

Электризуемость - это способность материалов накапливать на своей поверхности статическое электричество. При трении текстильных материалов на их поверхности протекают одновременно два процесса: процесс возникновения зарядов статического электричества определенной полярности и процесс рассеивания зарядов. Когда равновесие между этими процессами нарушается, происходит электризация.

Электризуемость текстильных материалов имеет суточные и сезонные колебания, связанные с ионизацией атмосферы. Например, летом электризуемость материалов выше, так как солнечная активность в этот период сильнее. В большинстве случаев электризуемость текстильных материалов представляет собой отрицательное явление: она осложняет технологические процессы производства материалов и изготовления из них швейных изделий. Электризуемость материалов в одежде при ее носке вызывает у человека неприятные ощущения, прилипание изделия к телу, быстрое загрязнение в результате прилипания частиц пыли и т.д. Кроме того, оказывает биологические воздействия на человеческий организм. Однако механизм этих воздействий еще до конца не выяснен. Известно, что положительное электрическое поле на поверхности кожи человека вызывает ряд патологических реакций. Отрицательное электрическое поле оказывает благоприятное воздействие на организм.

Правила при работе с кислотами и щелочами

Работа с концентрированными кислотами и щелочами проводится только в вытяжном шкафу и с использованием защитных средств (перчаток, очков). При работе с дымящей азотной кислотой с удельной плотностью 1,51 - 1,52 г/куб. см, а также с олеумом следует надевать также резиновый фартук.

Используемые для работы концентрированные азотная, серная, соляная кислоты должны храниться в вытяжном шкафу в стеклянной посуде емкостью не более 2 куб. дм. В местах хранения кислот недопустимо нахождение легковоспламеняющихся веществ.

Разбавленные растворы кислот (за исключением плавиковой) также хранят в стеклянной посуде, а щелочей - в полиэтиленовой таре.

Работа с плавиковой кислотой требует особой осторожности и проводится обязательно в вытяжном шкафу. Хранить плавиковую кислоту необходимо в полиэтиленовой таре.

Переносить бутыли с кислотами разрешается вдвоем и только в корзинах, промежутки в которых заполнены стружкой или соломой. Более мелкие емкости с концентрированными кислотами и щелочами следует переносить в таре, предохраняющей от ожогов (специальные ящики с ручкой).

Концентрированные кислоты, щелочи и другие едкие жидкости следует переливать при помощи специальных сифонов с грушей или других нагнетательных средств.

Для приготовления растворов серной, азотной и других кислот их необходимо приливать в воду тонкой струей при непрерывном помешивании. Для этого используют термостойкую посуду, так как процесс растворения сопровождается сильным разогреванием.

Приливать воду в кислоты запрещается!

В случае попадания кислоты на кожу пораженное место следует немедленно промыть в течение 10 - 15 минут быстротекущей струей воды, а затем нейтрализовать 2 - 5% раствором карбоната натрия.

Пролитую кислоту следует засыпать песком. После уборки песка место, где была разлита кислота, посыпают известью или содой, а затем промывают водой.

Пролитые концентрированные растворы едкого натра, едкого калия и аммиака можно засыпать как песком, так и древесными опилками, а после их удаления обработать место слабым раствором уксусной кислоты.

Использованную химическую посуду и приборы, содержащие кислоты, щелочи и другие едкие вещества, перед сдачей на мойку необходимо освободить от остатков и обязательно ополоснуть водопроводной водой.

Нанотехнологии

Нанотехнологии - комплекс областей науки и технологий, который стремительно меняется под влиянием новых открытий, происходящих практически каждый месяц.

Наноматериалы в текстиле. Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства.

Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость : благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит».

Биомиметика в текстиле. В современных нанотехнологих широко используется прием, назвываемый биомиметикой, суть котрого состоит в том, чтобы «подсмотреть» и повторить успешное рещение проблемы, которое использует сама природа. Так были получены ткани-«липучки», принцип действия которых был взят у геккона, сверхпрочные нити и «самоочищающаяся» ткань, секрет которой подсказал цветок лотоса. Ниже мы расскажем подробнее об этих достижениях.

Американские исследователи из университета Клемсона (Clemson University ) на основе детальных исследований структуры листьев лотоса создали «самоочищающееся» покрытие , которое отталкивает гораздо больше воды и грязи, чем обычные ткани. По словам химика-текстильщика Фила Брауна, покрытие не очищает само себя, оно просто отталкивает грязь лучше, чем любая существующая сегодня ткань. Принцип действия позаимствован у природы. Как было установлено, листья лотоса обладают свойством «самостоятельного очищения», их поверхность отталкивает большую часть грязи и воды. Поверхность листа лотоса устроена таким образом, что капля воды катится по нему, собирая грязь. А на гладкой поверхности, наоборот, капля воды, сползая, оставляет грязь на месте.

Исследователи повторили этот механизм, нанеся разработанное покрытие на волокна ткани. Для этого ткань обработали специальным связующим полимером (полиглицидилом метакрилатом), который затем покрыли наночастицами серебра, остановив на них свой выбор из-за их противомикробного действия. Далее на поверхности наночастиц был выращен еще один полимерный гидрофобный слой, который отталкивает капли воды, заставляя их катиться по ткани и собирать грязь. Покрытие устойчиво и не разрушается при очистке и механическом воздействии.

Созданная ткань, использующая этот принцип, даже если ее пытаться сильно испачкать, будет отталкивать большинство мокрой грязи. А оставшуюся можно будет легко смыть обычной водой. Использование различных наночастиц в составе нового покрытия, безвердного для окружающей среды, позволит ткани приобрести ряд полезных свойств: от поглощения неприятных запахов до уничтожения микроорганизмов.

Новое запатентованное покрытие пока не имеет официального названия. Его можно нанести практически на любую ткань, включая шелк, полиэфир и хлопок. Однако технологический процесс достаточно сложен и не может быть реализован в промышленности, пока не будет создан простой и надежный принцип обработки ткани в несколько этапов.

Производство нановолокон
Нановолокна можно производить, наполняя традиционные волокнообразующие полимеры отличающимися по конфигурации наночастицами различных веществ или путем выработки ультратонких (диаметром в рамках наноразмеров) волокон.
Наполненные наночастицами волокна начали производить с 1990 года. Такие волокна малоусадочны, имеют пониженную горючесть, повышенную прочность на разрыв и истирание и в зависимости от природы вводимых наночастиц могут приобретать другие защитные свойства, требующиеся человеку.
В качестве наполнителей волокон широко используют углеродные нанотрубки с одной или несколькими стенками. Волокна, наполненные нанотрубками, приобретают уникальные свойства – они в 6 раз прочнее стали и в 100 раз легче ее. Наполнение волокон углеродными наночастицами на 5-20% от массы придает им также сопоставимую с медью электропроводность и химическую устойчивость к действию многих реагентов.
Углеродные нанотрубки используются в качестве армирующих структур, блоков для получения материалов с высокими прочностными свойствами: экранов дисплеев, сенсоров, хранилищ жидкого топлива, воздушных зондов и т.д. Например, при наполнении углеродными нанотрубками поливинилспиртового волокна, получаемого по коагуляционной технологии прядения, оно становится в 120 раз выносливее, чем стальная проволока и в 17 раз легче, чем волокно Кевлар (самое известное и прочное арамидное химволокно, получаемое по традиционной технологии и используемое в бронежилетах). Подобные нановолокна уже сейчас начинают применять для производства взрывозащищающей одежды и одеял, защиты от электромагнитных излучений.
Очень ценные и полезные свойства химические волокна приобретают при наполнении их наночастицами глинозема. Наночастицы глинозема в виде мельчайших хлопьев обеспечивают высокую электро- и теплопроводность, химическую активность, защиту от УФ-излучения, огнезащиту и высокую механическую прочность. У полиамидных волокон, содержащих 5% наночастиц глинозема, на 40% повышается разрывная нагрузка и на 60% – прочность на изгиб. Такие волокна используют в производстве средств защиты от ударов, например защитных касок. Известно, что полипропиленовые волокна очень трудно окрашиваются, что существенно ограничивает область их применения в производстве материалов бытового назначения. Введение 15% наночастиц глинозема в структуру полипропиленовых волокон обеспечивает возможность крашения их различными классами красителей с получением окрасок глубоких тонов.
Интенсивно развиваются исследования и производство синтетических волокон, наполненных наночастицами оксидов металлов: ТiO2, Al2O3, ZnO, MgО. Волокна приобретают следующие свойства:
- фотокаталитическую активность;
- УФ-защиту;
- антимикробные свойства;
- электропроводность;
- грязеотталкивающие свойства;
- фотоокислительную способность в различных химических и биологических условиях.
Еще одним интересным направлением в производстве нановолокон является придание им ячеистой, пористой структуры с наноразмерами пор. При этом достигается резкое снижение удельной массы (получение легких материалов), хорошая теплоизоляция, устойчивость к растрескиванию. Образующиеся нанопоры волокон могут быть заполнены различными жидкими, твердыми и даже газообразными веществами с различным функциональным назначением (медицина, ароматизация текстильных полотен, биологическая защита).
Другой тип нановолокон – ультратонкие волокна, диаметр которых не превышает 100 нм. Эта тонина обеспечивает высокое значение удельной поверхности и, как следствие, высокое удельное содержание функциональных групп. Последнее обеспечивает хорошую сорбционную способность и каталитическую активность материалов из подобных волокон.
В Европе (Англия, Франция), США, Израиле и Японии параллельно идут интенсивные работы по созданию синтетических белковых волокон, имитирующих структуру паутины, имеющей непревзойденные физико-механические свойства. Используя для выработки подобного белка другие продуценты (микроорганизмы, растения), удалось получить полимерные белковые нановолокна толщиной около 100 нм. Мягкий и сверхпрочный «паучий шелк» сможет заменить жесткий и негибкий кевлар в бронежилетах. Области применения «паучьего шелка» разнообразны: это и хирургические нити, и невесомые и чрезвычайно прочные бронежилеты, и легкие удочки, и рыболовные снасти. Пока речь идет о малых партиях, но нанотехнологии развиваются столь бурно и стремительно, что промышленного выпуска изделий, изготовленных из «паучьего шелка», ждать недолго.

Наноматериалы в текстиле Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства. Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость: благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит». ПомимоLevi Strauss, ткани использует в своей джинсовой одежде и элементах обуви, в частности, компания Dockers. А американская компания NanoSonic разработала уникальную технологию, позволяющую создавать материалы с невозможными в природе свойствами, в частности, листы полимера, гибкие и упругие, как резина, и проводящие ток, как металл. Новый продукт назвали Metall Rubber – металлизированная резина. Процесс производства Metall Rubber называется электростатической самосборкой. Для его реализации компания даже создала специального робота, ускоряющего создание образцов. Дело в том, что наращивание пластины или какой-либо иной детали из металлического каучука идет буквально по молекулам. Новый материал выдерживает многократное скручивание, нагрев до 200°С и агрессивные химические среды. Компания надеется, что металлический каучук найдет применение в различных областях техники: от аэрокосмической отрасли до электроники, в том числе и в изготовлении текстиля для спецодежды (рис. 1). Из «горячих новинок» текстильного нанорынка следует отметить утеплительный материал Aspen’s Pyrogel AR5401, изготовленный на основе полимерного материала с нанопорами. Благодаря им материал ведет себя как хороший теплоизолятор. Компания Aspen Aerogels в марте 2004 г. начала производство из нового материала утепляющих стелек для обуви. Эти стельки заказывали: команда, выигравшая в 2004 г. марафон к Северному полюсу, одна из канадских лыжных команд и элитное спецподразделение армии США. Отзывы заказчиков о продукте были схожими: это универсальное решение для работы в экстремальных условиях (рис. 2). Новый изолятор сохраняет тепло лучше, чем все существующие современные материалы. По сравнению с ними его тепловые характеристики при одинаковой толщине образцов улучшились с 3 до 20 раз. Не удивительно, что при таких показателях изделия из нового теплоизолятора обладают минимальной материалоемкостью. Так, в армейской обуви слой стелек из Pyrogel AR5401 составил всего 2,5 мм в толщину.

Заключение

Важной составной частью личной гигиены является гигиена одежды.

По выражению Ф. Ф. Эрисмана, одежда является своеобразным кольцом защиты от неблагоприятных природных условий, механических воздействий, предохраняет поверхность тела от загрязнения, избыточного солнечного излучения, других неблагоприятных факторов бытовой и производственной среды.

В настоящее время в понятие пакета одежды входят следующие основные компоненты: белье (1-й слой), костюмы и платья (2-й слой), верхняя одежда (3-й слой).

По назначению и характеру использования различают одежду бытовую, профессиональную (спецодежду), спортивную, военную, больничную, обрядовую и т. д.

Повседневная одежда должна соответствовать следующим основным гигиеническим требованиям:

1) обеспечивать оптимальный пододежный микроклимат и способствовать тепловому комфорту;

2) не затруднять дыхание, кровообращение и движения, не смещать и не сдавливать внутренние органы, не нарушать функций опорно-двигательного аппарата;

3) быть достаточно прочной, легко очищаться от внешних и внутренних загрязнений;

5) иметь сравнительно небольшую массу (до 8-10 % массы тела человека).

Важнейшим показателем качества одежды и ее гигиенических свойств является пододежный микроклимат. При температуре окружающей среды 18-22 °С рекомендуются следующие параметры пододежного микроклимата: температура воздуха – 32,5-34,5 °С, относительная влажность – 55-60 %.

Гигиенические свойства одежды зависят от сочетания ряда факторов. Главные из них – вид ткани, характер ее выделки, покрой одежды. Для изготовления ткани используются различные волокна – натуральные, химические искусственные и синтетические. Натуральные волокна могут быть органическими (растительными, животными) и неорганическими. К растительным (целлюлозным) органическим волокнам относятся хлопок, лен, сизаль, джут, пенька и прочие, к органическим волокнам животного происхождения (белковым) – шерсть и шелк. Для изготовления некоторых видов спецодежды могут использоваться неорганические (минеральные) волокна, например асбест.

В последние годы все большее значение приобретают химические волокна, которые также подразделяют на органические и неорганические. Основную группу волокон химического происхождения составляют органические. Они могут быть искусственными и синтетическими. К искусственным волокнам относятся вискозные, ацетатные, триацетатные, казеиновые и т. д. Их получают при химической переработке целлюлозы и других исходных материалов природного происхождения.

Синтетические волокна получают путем химического синтеза из нефти, угля, газа и другого органического сырья. По происхождению и химической структуре выделяют гетероцидные и карбоцидные синтетические волокна. К гетероцидным относятся полиамидные (капрон, нейлон, перлон, ксилон и др.), полиэфирные (лавсан, терилен, дакрон), полиуретановые, к карбицидным – поливинилхлоридные (хлорин, винол), поливинилспиртовые (винилон, куралон), полиакрилнитрильные (нитрон, орлон).

Гигиенические достоинства или недостатки тех или иных тканей прежде всего зависят от физико-химических свойств исходных волокон. Наиболее важное гигиеническое значение из этих свойств имеют воздухо-, паропроницаемость, влагоемкость, гигроскопичность, теплопроводность.

Воздухопроницаемость характеризует способность ткани пропускать через свои поры воздух, от чего зависят вентиляция пододежного пространства, конвекционная отдача тепла с поверхности тела. Воздухопроницаемость ткани зависит от ее структуры, пористости, толщины и степени увлажнения. Воздухопроницаемость тесно связана со способностью ткани поглощать воду. Чем быстрее заполняются влагой поры ткани, тем менее воздухопроводной она становится. При определении степени воздухопроницаемости стандартным считается давление 49 Па (5 мм вод.ст.).

Воздухопроницаемость тканей бытового назначения колеблется от 2 до 60 000 л/м 2 при давлении 1 мм вод.ст. По степени воздухопроницаемости различают ткани ветрозащитные (воздухопроницаемость 3,57-25 л/м 2) с малой, средней, высокой и очень высокой воздухопроницаемостью (более 1250,1 л/м 2).

Паропроницаемость характеризует способность ткани пропускать через поры водяные пары. Абсолютная паропроницаемость характеризуется количеством водяных паров (мг), проходящих в течение 1 ч через 2 см 2 ткани при температуре 20 °С и относительной влажности 60 %. Относительная паропроницаемость – процентное отношение количества водяных паров, прошедших через ткань, к количеству воды, испарившейся из открытого сосуда. Для различных тканей этот показатель колебания от 15 до 60 %.

Испарение пота с поверхности тела – один из главных способов теплоотдачи. В условиях теплового комфорта с поверхности кожи в течение 1 ч испаряется 40-50 г влаги. Выделение пота более 150 г/ч сопряжено с тепловым дискомфортом. Такой дискомфорт возникает и при давлении пара в пододежном пространстве свыше 2 Гпа. Поэтому хорошаяпаропроницаемость ткани является одним из факторов обеспечения теплового комфорта.

Удаление влаги через одежду возможно путем диффузии водяных паров, испарения с поверхности увлажненной одежды либо испарения конденсата пота из слоев этой одежды. Наиболее предпочтительным путем удаления влаги является диффузия водяных паров (другие пути увеличивают теплопроводность, снижают воздухопроницаемость, уменьшают пористость).

Одним из наиболее важных в гигиеническом отношении свойств ткани является ее гигроскопичность, характеризующая способность волокон ткани поглощать водяные пары их воздуха и с поверхности тела и удерживать их при определенных условиях. Наибольшей гигроскопичностью обладают шерстяные ткани (20 % и более), что позволяет им сохранить высокие теплозащитные свойства даже при увлажнении. Минимальной гигроскопичностью обладают синтетические ткани. Важной характеристикой тканей (особенно используемой для изготовления белья, рубашечно-платьевых изделий, полотенец) является их способность впитывать капельно-жидкую влагу. Оценивают эту способность по капиллярности ткани. Наиболее высокая капиллярность у хлопковых и льняных тканей (110-120 мм/ч и более).

В обычных температурно-влажностных условиях хлопчатобумажные ткани удерживают 7-9 %, льняные – 9-11 %, шерстяные – 12-16 %, ацетатные – 4-5 %, вискозные – 11-13 %, капроновые – 2-4 %, лавсановые – 1 %, хлориновые – менее 0,1 % влаги.

Теплозащитные свойства ткани определяются теплопроводностью, которая зависит от ее пористости, толщины, характера переплетения волокон и т. д. Теплопроводность тканей характеризует тепловое сопротивление, для определения которого необходимо измерить величину теплового потока и температуру кожи. Плотность теплового покрова определяется количеством тепла, теряемого с единицы поверхности тела за единицу времени, конвекцией и радиацией при градиенте температуры на внешней и внутренней поверхности ткани, равном 1 °С, и выражается в Вт/м 2 .

В качестве единицы теплозащитной способности ткани (способность снижать плотность теплового потока) принята величина сlо (от англ. сlothes – «одежда»), которая характеризует теплоизоляцию комнатной одежды, равную 0,18 °С м/ 2 ч/ккал. Одна единица сlо обеспечивает состояние теплового комфорта, если теплообразование спокойно сидящего человека составляет примерно 50 ккал/м 2 ч, а окружающий микроклимат характеризуется температурой воздуха в 21 °С, относительной влажностью 50 %, скоростью движения воздуха 0,1 м/с.

Влажная ткань обладает высокой теплоемкостью и потому значительно быстрее поглощает тепло от тела, способствуя его охлаждению и переохлаждению.

Помимо перечисленных, важное гигиеническое значение имеют такие свойства ткани, как способность пропускать ультрафиолетовое излучение, отражать видимое излучение, время испарения влаги с поверхности тела. Степень прозрачности синтетических тканей для УФ-излучения составляет 70 %, для других тканей эта величина значительно меньше (0,1-0,2 %).

Основным гигиеническим достоинством тканей из натуральных волокон является их высокая гигроскопичность и хорошая воздухопроводность. Именно поэтому хлопчатобумажные и льняные ткани используют для изготовления белья и бельевых изделий. Особенно велики гигиенические достоинства шерстяных тканей – их пористость составляет 75-85 %, у них высокая гигроскопичность.

Вискозные, ацетатные и триацетатные ткани, получаемые путем химической обработки древесной целлюлозы, характеризуются высокой способностью сорбировать на своей поверхности водяные пары, они обладают высокой влагопоглощаемостью. Однако для вискозных тканей характерна длительная испаряемость, что вызывает значительные теплопотери с поверхности кожи и может привести к переохлаждению.

Ацетатные ткани по своим свойствам близки к вискозным. Однако их гигроскопичность и влагоемкость значительно ниже, чем у вискозных, при их носке образуются электростатические заряды.

Особое внимание гигиенистов в последние годы привлекают синтетические ткани. В настоящее время более 50 % видов одежды изготавливаются с их применением. Эти ткани имеют ряд достоинств: они имеют хорошую механическую прочность, устойчивы к истиранию, воздействию химических и биологических факторов, обладают антибактериальными свойствами, эластичностью и т. д. К недостаткам следует отнести низкую гигроскопичность и, как следствие, – пот не впитывается волокнами, а скапливается в воздушных порах, ухудшая воздухообмен и теплозащитные свойства ткани. При высокой температуре окружающей среды создаются условия для перегрева организма, а при низкой – для переохлаждения. Синтетические ткани способности поглощать воду в 20-30 раз меньше, чем шерстяные. Чем выше влагопроницаемость ткани, тем хуже ее теплозащитные свойства. Кроме того, синтетические ткани способны удерживать неприятные запахи, хуже отстирываются, чем натуральные. Возможны деструкция компонентов волокон вследствие их химической нестабильности и миграция соединений хлора и других веществ в окружающую среду и пододежное пространство. Миграция, например, формальдегидсодержащих веществ продолжается в течение нескольких месяцев и способна создавать концентрацию, в несколько раз превышающую ПДК для атмосферного воздуха. Это может привести к кожно-резорбтивному, раздражающему и аллергенному воздействию.

Электростатическое напряжение при ношении одежды из синтетических тканей может быть до 4-5 кВ/см при норме не более 250-300 В/см. Не следует использовать синтетические ткани для белья новорожденных, детей ясельного, дошкольного и младшего школьного возраста. При изготовлении ползунков и колготок допускается добавление не боле 20 % синтетических и ацетатных волоко

Выводы из моей работы

Итак, прочитав различную литературу об истории, видах и свойствах шерсти, я добилась поставленной цели и доказала гипотезу своей исследовательской работы о том, что шерсть овцы имеет не только целебное и оздоровительное свойство, но и является доступным и универсальным материалом в применении даже в домашних условиях.

Овечья шерсть определенно является одним из первых материалов, который человек научился применять себе на пользу.

Можно получить так называемые грубые шерстяные изделия эту в первую очередь всем известные валенки.

Особенно хороши шерстяные вязаные изделия. Они обладают не только красотой привлекательностью, но и сделанные из натуральных шерстяных ниток очень хорошо согревают в холодное время года и легко отводят влагу от тела.

Я рада, что у меня тема проекта очень важна для севременого мира и дляменя. Сама, в домашних условиях, исследовала ткани на гигиенические свойства. В процессе изготовления я пришла к выводу, что любое рукоделие – это кропотливый труд, который требует немало умения, терпения и фантазии. На примере бабушки я поняла, что к любому делу надо относиться добросовестно.

Перспектива дальнейшей деятельности: в будущем я продолжу заниматься своим новым увлечением, и планирую научиться вязать вещи не только для кукол, но и для себя и моих близких. Возможно, сошью стеганое шерстяное одеяло для сестренки. Мне хотелось бы не только самой вязать и делать красивые и полезные вещи, но и научить этому своих подруг.

Предметы: