Раз о ресурсе энергооборудования. Истёк средний срок службы, но поверка действует и ещё два года - выставили штрафы Полный средний срок службы не

Средний срок службы объекта – это математическое ожидание срока службы (или календарная продолжительность) эксплуатации до предельного состояния. Срок службы горных машин определяется физическим и технико-экономическим факторами , а также моральным износом (техническим устареванием).

Физическими факторами являются усталостная прочность рабочих органов, ходовой части, силовых передач, или металлоконструкции (рамы).

Технико-экономические факторы определяются себестоимостью продукции и соотношением между затратами на восстановление работоспособности эксплуатируемой машины и затратами на приобретение новой. Экономически целесообразным пределом эксплуатации следует считать момент, когда предстоящие расходы на капитальный ремонт приближаются к стоимости новой машины. В этом случае приобретение новой выгодно ввиду лучшего качества и более высоких эксплуатационных показателей вследствие непрерывного научно-технического прогресса.

Моральный износ наступает, когда машина, сохраняя работоспособность, по своим показателям перестает удовлетворять потребителей в силу повышения требований к технологической операции или появления более новых машин с улучшенными эксплуатационными показателями.

Безусловное устаревание наступает в 2-х случаях:

При полной замене существующего технологического процесса;

При создании новых рабочих процессов или новых конструктивных схем, превосходящих по показателям применяющиеся.

Наиболее действенным средством против морального устаревания является повышение степени использования машины в период эксплуатации. Сокращение срока службы до 3-х лет практически исключает устаревание.

Комплексные показатели надежности

Коэффициент готовности К Г – вероятность того, что объект окажется работоспособным в произвольный момент времени, кроме планируемых периодов, в течение которых его использование по назначению не предусматривалось (проведение плановых ТО или ремонтов). В статистической форме К Г определяется отношением наработки на отказ T 0 к сумме (Т 0 +Т В), где T B - среднее время восстановления работоспособности объекта.



Коэффициент технического использованияК ТИ – отношение математического ожидания времени пребывания объекта в работоспособном состоянии t сум за некоторый период эксплуатации к сумме (t сум +t ТО +t рем) математических ожиданий времени пребывания объекта в работоспособном состоянии, времени простоев, обусловленных ТО, и времени ремонта за тот же период эксплуатации, т.е. К ТИ = t сум/ (t сум +t ТО +t рем). При этом время простоев по организационным причинам не учитывается.

Надежность системы

Надежность горных машин, как правило, определяют при рассмотрении их как систем , которые могут быть последовательными, параллельными и комбинированными.

Если система состоит из N объектов и структура системы такова, что отказ любого из элементов вызывает отказ всей системы, то вероятность безотказной работы последовательной системы P c (t) в течение времени t равна произведению вероятностей безотказной работы ее элементов

Структура последовательной системы имеет следующий вид:


При ориентировочном расчете надежности данной системы делается упрощающее предположение – все однотипные элементы равнонадежны , т.е. независимо от режимов работы все однотипные элементы имеют одинаковую интенсивность отказов, равную среднестатистическому ее значению. С учетом принятого допущения вероятность безотказной работы системы равна

где N i – число элементов i -го типа; r – число типов элементов;

l i - среднестатистическая интенсивность отказов элементов i-го типа.

Последовательные системы, состоящие из одинаковых элементов (грузовая или приводная цепь, зубчатое колесо, подшипник качения, в которых элементами являются звенья, зубья, шарики или ролики, и т.п.), получили название «система типа цепь». В горных машинах к таким системам можно отнести исполнительные рабочие органы в виде многозаходных фрез с элементами – резцами или зубками, расположенными в одной плоскости резания.

Резервирование

Надежность проектируемой горнодобывающей техники обеспечивается конструктивными, технологическими и эксплуатационными мероприятиями.

Для повышения надежности системы применяется резервирование , т.е. метод повышения надежности объекта введением избыточности .

Избыточность – это дополнительные средства и возможности сверх минимально необходимых для выполнения объектом заданных функций.

Основной элемент – элемент структуры объекта, минимально необходимый для выполнения объектом заданных функций.

Резервный элемент – элемент, предназначенный для обеспечения работоспособности объекта в случае отказа основного элемента.

Общее резервирование, при котором резервируется объект в целом.


Применяют три вида резервирования элементов и объектов:

- постоянное резервирование (с горячим резервом), при котором резервные элементы участвуют в функционировании объекта наравне с основными;

Резервирование замещением (с ненагруженным или холодным резервом) , при котором функции основного элемента передаются резервному только после отказа основного;

Резервирование с резервом , работающим в облегченном режиме .

Кратность резервирования – это отношение числа резервных элементов к числу резервируемых или основных.Дублирование резервирование с кратностью, равной единице.

Структурное резервирование предусматривает использование в объекте избыточных элементов структуры.

Резервирование наиболее широко применяют в радиоэлектронной аппаратуре, в которой резервные элементы малогабаритны и легко переключаются.

В горном машиностроении резервирование применяют преимущественно при опасности аварий, а также в машинах и установках, которые обеспечивают основные технологические операции в составе автоматизированных комплексов. При этом резервные элементы могут использоваться как рабочие в часы «пик»; в ряде систем резервирование обеспечивает сохранение работоспособности, но с пониженными эксплуатационными показателями. В ответственных приводах используют, например, двойную систему смазки, комбинированные уплотнения, сдвоенные подшипники.

Рисунок.3 - Сервер DEPO Storm 1300Q1

Процессоры:

Устанавливается один процессор Intel® Core™ i7/Intel® Xeon® 5500/5600 серии с шиной QPI до 6.4GT/s.

Intel® X58 Express ICH10R.

Устанавливается до 24Гб трехканальной оперативной памяти по спецификации DDR3-1333/1066/800. Возможна поддержка ECC. Имеется 6 слотов для оперативной памяти.

Жесткие диски:

Возможна установка до 4 дисков с интерфейсом SAS/SATA с поддержкой функции "горячей" замены и возможностью организации RAID массивов уровней RAID 0, 1, 10, 5, 5EE, 50, 6, 60.

Стандартное оборудование:

Один высокоскоростной последовательный порт 16550 (FIFO). Второй опционально;

Разъемы PS/2 для подключения мыши и клавиатуры;

Разъемы 2xUSB на задней панели и 2хUSB на передней панели опционально;

Интегрированный видеоадаптер Matrox G200eW 8 MB DDR2.

Сетевой интерфейс:

Двухпортовый интегрированный Gigabit Ethernet (10/100/1000Мбит) Intel 82574L.

Особенности:

Поддержка технологий Plug and Play, DMI 2.3, ACPI 2.0, PCI 2.2, Wake-On-LAN, Wake-On-Ring, SMBIOS 2.3;

Датчик вскрытия корпуса;

Поддержка технологии диагностики жестких дисков S.M.A.R.T;

Непрерывный контроль напряжений по каналам с выдачей сообщения об отклонении +1.8V, +3.3V, +5V, ±12V, +3.3V Standby, +5V Standby, VBAT, HT, Memory, Chipset Voltages;

Контроль скорости вращения и управление вентиляторами;

Система Watch Dog, предотвращающая зависания системы. Все разъемы отмаркированы в соответствии со спецификацией PC’99;

В комплект поставки включены драйверы, программное обеспечение мониторинга системы и управления сервером, а также документация на русском языке.

Система охлаждения:

3 вентилятора для обеспечения нормального терморежима внутри сервера;

1 вентилятор на блоке питания.

Сервер комплектуется блоками питания с автоматическим выбором частоты (50/60Гц);

Блок питания 520Вт или 2x400Вт.

Исполнение:

Для установки в 19" стойку, высота 1U. Комплектуется набором для монтажа в стойку. Рельсы имеют длину 690мм. Расстояние между стойками для крепления регулируется и составляет 710-830мм;

Размеры (ДВШ, мм) 504*43*437;

Масса до 15кг;

Расширение:

Слот 1 (x8) PCI-E или опционально 1 (x16) PCI-E.



Гарантийное обслуживание: срок гарантии от 1 до 3 лет с возможностью обслуживания на месте эксплуатации.


Рисунок. 4 - Коммутатор D-Link DES-1210-52

Металлический корпус, 19’’
Интерфейсы:
- 48 портов 10/100Base-TX;
- 2 порта 10/100/1000Base-T;
- 2 комбо-порта 10/100/1000Base-T /SFP;
Порты:
- IEEE 802.3 10BASE-T Ethernet (медный кабель на основе витой пары);
- IEEE 802.3u 100BASE-TX Fast Ethernet (медный кабель на основе витой пары);
- IEEE 802.3ab 1000BASE-T Gigabit Ethernet (медный кабель на основе витой пары);
- IEEE 802.3z Gigabit Ethernet (оптоволоконный кабель);
- автосогласование ANSI/IEEE 802.3;
- управление потоком IEEE 802.3x;
Производительность:
- пропускная способность коммутатора: 17.6 Гб;
- максимальная скорость продвижения пакетов размером 64 байта: 13.1 Mpps;
- таблица MAC-адресов: 8K записей на устройство;
- буфер RAM: 1 Мб;
- SDRAM для CPU: 64 Мб;
- Flash-память: 16 Мб
- метод коммутации: Store-and-forward.
Индикаторы диагностики :
- Power (на устройство);
- Link/Activity/Speed (на порт).

Программное обеспечение:
- функции уровня 2
- таблица МАС-адресов: 8K
- управление потоком+ Управление потоком 802.3x+ Предотвращение блокировки HOL;
- IGMP Snooping+ IGMP v1/v2 Snooping+ Поддержка до 256 IGMP-групп+ Поддержка до 64 статических многоадресных групп+ IGMP Snooping по VLAN+ Поддержка IGMP Querier;
- фильтрация многоадресных рассылок+ Перенаправление всех незарегистрированных групп+ Фильтрация всех незарегистрированных групп;
- Spanning Tree Protocol+ 802.1D STP+ 802.1w RSTP;
- функция Loopback Detection;
- Link aggregation 802.3ad+ Макс. кол-во групп на устройство – 8, 8 портов на группу;
- Port Mirroring+ One-to-One+ Many-to-One+ На основе потока;
- функция диагностики кабеля;
- настраиваемый интерфейс MDI/MDIX.
VLAN:
- 802.1Q tagged VLAN;
- группы VLAN+ Макс. 256 статических VLAN+ Макс. 4094 VIDs;
- управление VLAN;
- Asymmetric VLAN;
- Auto Voice VLAN+ Макс. 10 пользователей, определенных OUI+ Макс. 8 по умолчанию определенных OUI;
- Auto Surveillance VLAN.
Качество обслуживания (QoS) :
- 802.1p;
- 4 очереди;
- Обработка очередей+ Strict+ Weighted Round Robin (WRR);
- CoS на основе+ Очереди приоритетов 802.1p+ DSCP;
- управление полосой пропускания+ На основе порта (входящее/ исходящее, с шагом до 64 Кбит/с для 10/100 Мбит/с и с шагом 1850 Кбит/с для 1000 Мбит/с).
Списки управления доступом (ACL):
- макс. 50 входящих профилей;
- до 240 входящих правил доступа;
- ACL на основе+ MAC-адреса+ IPv4-адреса+ ICMP/IGMP/TCP/UDP.

Безопасность:
- 802.1X+ Управление доступом на основе порта;
- Port Security+ Поддержка до 64 MAC-адресов на порт;
- контроль широковещательного/ многоадресного/ одноадресного шторма;
- статический MAC-адрес;
- D-Link Safeguard Engine;
- DHCP Server Screening;
- Предотвращение атак ARP Spoofing+ Макс. 64 записи;
- SSL;
- поддержка v1/v2/v3.
Управление:
- Web-интерфейс GUI;
- Compact CLI через Telnet;
- Telnet-сервер;
- Утилита SmartConsole;
- TFTP-клиент;
- SNMP+ Поддержка v1/v2/v3;
- SNMP Trap;
- Trap для утилиты SmartConsole;
- Системный журнал;
- Макс. 500 записей в журнале;
- Поддержка IPv4 log serve;
- BootP/DHCP-клиент;
- Настройка времени+ SNTP;
- LLDP1;
- LLDP-MED 2 ;
- PoE на основе времени;
MIB:
- 1213 MIB II;
- 1493 Bridge MIB;
- 1907 SNMP v2 MIB;
- 1215 Trap Convention MIB;
- 2233 Interface Group MIB;
- D-Link Private MIB;
- Power Ethernet-MIB;
- LLDP-MIB;
Соответствие стандарту RFC:
- RFC 768 UDP;
- RFC 783 TFTP-клиент;
- RFC 791 IP;
- RFC 792 ICMP;
- RFC 793 TCP;
- RFC 826 ARP;
- RFC 854, 855, 856, 858 Telnet-сервер;
- RFC 896 Congestion Control in TCP/IP Network;
- RFC 903 Reverse Address Resolution Protocol;
- RFC 951 BootP-клиент;
- RFC 1155 MIB;
- RFC 1157 SNMP v1;
- RFC 1191 Path MTU Discovery;
- RFC 1212 Concise MIB Definition;
- RFC 1213 MIB II, IF MIB;
- RFC 1215 Traps for use with the SNMP;
- RFC 1239 Standard MIB;
- RFC 1350 TFTP;
- RFC 1493 Bridge MIB;
- RFC 1519 CIDR;
- RFC 1942 BootP/DHCP клиент;
- RFC 1901, 1907, 1908 SNMP;
- RFC 1945 HTTP/1.0;
- RFC 2131, 1232 DHCP;
- RFC 2138 Аутентификация RADIUS;
- RFC 2233 Interface MIB;
- RFC 2570, 2575 SNMP;
- RFC 2578 Structure of Management Information Version 2 (SMIv2) ;
- RFC 3416, 3417 SNMP;
- RFC 3621 Power Ethernet (только модель PoE) ;

Физические параметры: MTBF (часов)- 289.012 ч.

Акустика :0 дБ. Тепловыделение : 98.61 BTU/час.

Питание на входе : нутрвенний универсальный источник питания, от 100 до 240 В переменного тока, 50/60 Гц.

Максимальная потребляемая мощность: 28.9 Вт.

Размеры (Ш х Д х В): 440 х 250 х 44 мм.

Показатели долговечности характеризуют свойство технического изделия сохранять во времени работоспособность до наступления предельного состояния, когда оно теряет работоспособность при установленной системе технического обслуживания и ремонтов.

Перечень используемых показателей долговечности таков:

Т р – среднийресурс, т.e. средний технический ресурс до капитального ремонта;

Т рγ - гамма-процентный ресурс;

Т р.н - назначенный ресурс;

Т р.у - установленный ресурс;

Т сл - средний срок службы;

Т слγ -гамма-процентный срок службы;

Т сл.н - назначенный срок службы;

Т сл.у - установленный срок службы;

Т сп - срок службы до списания изделия или предельный срок службы.

Понятие «ресурс» характеризует долговечность, по наработке изделия, а «срок службы» - по календарному времени.

Исходные данные для расчета ресурса, порядок его расчета и статистической оценки, а также привила усыновления требуемого ресурса изделий регламентированы методическими указаниями МУ10-71 «Промышленные изделия. Определение ресурса». М.: Изд-во стандартов, 1972.

Так как под ресурсом понимается суммарная наработка до предельного состояния, то его показатели определяются по формулам, аналогичным формулам наработки на отказ.

Средний ресурс изделия - это математическое ожидание его ресурса. Статистическая оценка среднего ресурса такова:

где Т р - ресурс i -го объекта;

Ν - число изделий, поставленных на испытания или в эксплуатацию.

Гамма-процентный ресурс выражает наработку, в течение которой изделие с заданной вероятностью γ процентов не досигает предельного состояния. Гамма-процентный ресурс является основным расчетным показателем, например для подшипников и других изделий. Существенное достоинство этого показателя в возможности его определения до завершения испытаний всех образцов. В большинстве случаев для различных изделий используют критерий 90%-го ресурса.

Вероятность обеспечения ресурса Т рγ , соответствующую значению γ /100, определяют по формуле

, (5.21)

где Т р - наработка до предельного состояния (ресурса);

γ - число изделий (%), не достигающих с заданной вероятностью предельного состояния.

Значение гамма-процентного ресурса определяют с помощью кривых распределения ресурсов (рис. 23).

Назначенный ресурс - суммарная наработка, при достижении которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

Рисунок 9 – Определение значения гамма-процентного ресурса:

а и б – кривые соответственно убыли и распределения ресурсов

Под установленным ресурсом , понимается технически обоснованная или заданная величина ресурса, обеспечиваемая конструкцией, технологией и условиями эксплуатации, в пределах которой изделие не должно достигать предельного состояния.

Средний срок службы - математическое ожидание срока службы. Статистическую оценку среднего срока службы определяют по формуле: , (5.22)

где Т сл - срок службы i -гo изделия.

Гамма-процентный срок службы представляет собой календарную продолжительность эксплуатации, в течение которой изделие не достигает предельного состояния с вероятностью γ, выраженной в процентах. Для его расчета используют соотношение

. (5.23)

Назначенный срок службы - суммарная календарная продолжительность эксплуатации, при достижении которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

Под установленным сроком службы понимают технико-экономически обоснованный срок службы, обеспечиваемый конст

Рисунок 10-Типичная кривая износа поверхности изделия

рукцией, технологией и эксплуатацией, в пределах которого изделие не должно достигать предельного состояния.

Предельный срок службы Т сп представляет собой календарную продолжительность эксплуатации или использования изделия до момента его списания и снятия с эксплуатации (использования). Он определяется аналогично тому, как определяют, например, средний срок службы.

Известно, что основной причиной снижения показателей долговечности изделия является износ его деталей.

Изнашиванием называется процесс постепенного поверхностного разрушения материала деталей машин в результате трения о них других деталей, твердых тел или частиц. Известно, что сопротивление материала изнашиванию зависит не только от свойств этого материала, но и от многих условий, в которых происходит трение. К этим условиям (факторам) относятся: свойства сопряженного тела, свойства промежуточной среды, температура на поверхности и т.д.

На рисунке 10 приведена типичная кривая зависимости характеристик износа от длительности испытаний или эксплуатации изделий

Износ характеризуется тремя периодами:

1. Период начального износа или период приработки, когда происходит переход от исходного состояния поверхности тре­ния к состоянию относительно устойчивому. В течение периода приработки темп износа со временем уменьшается, приближа­ясь к некоторой постоянной величине, характерной для перио­да установившегося износа.

2. Период установившегося износа, при неизменных условиях работы трущейся поверхности, характеризуется постоянным тем­пом износа.

3. Период ускоренного износа.

Результаты испытаний на износ и наблюдений за плюсом впроцессе эксплуатации техники обычно выражают в относительных величинах.

Относительная износостойкость:

размерная

где Δl э - линейный износ эталона,

Δl м - линейный износ материала испытуемого изделия (образца или детали);

весовая

Е = ΔG э / ΔG м,

где ΔG э - весовой износ эталона,

ΔG м - весовой износ материала испытуемого изделия (образца или детали).

Износ может быть оценен не только относительной характеристикой линейного износа, но и по относительному изменению объемов эталона и объекта испытания.

На практике часто износостойкость (износность) оценивают в абсолютных величинах таких как мм/км, мм 2 /час и т.п.

Установлены три группы факторов, влияющих на вид и интенсивность износа поверхности деталей машин: 1 - факторы, обусловливающие внешне механические воздействия на поверхность трения; 2 - характеристики внешней среды; 3 - факторы, связанные со свойствами трущихся тел.

Конкретными факторами мерной группы являются: а) род трения (качение, скольжение); б) скорость относительного перемещения трущихся поверхностей; в) величина и характер давления при трении.

Основные факторы второй группы, связанные с внешней средой, таковы: а) смазка; б) газовая среда (воздушная, агрессивная или защитная атмосферы); в) наличие абразивных (твердых) частиц на поверхности трения.

Перед рассмотрением показателей долговечности объектов, необходимо ознакомиться с временными понятиями теории надежности.

Наработка – продолжительность или объем работы объекта. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т. п.), так и целочисленной величиной (число рабочих циклов, запусков и т.п.).

Наработка до отказа - наработка объекта от начала эксплуатации до возникновения первого отказа. Этот показатель характеризует восстанавливаемую систему.

Ресурс – суммарная наработка объекта от начала его эксплуатации или его возобновления после ремонта до перехода в предельное состояние.

Срок службы – календарная продолжительность эксплуатации от начала эксплуатации объекта или его возобновления после ремонта до перехода в предельное состояние.

Срок сохраняемости – календарная продолжительность хранения и (или) транспортирования объекта, в течение которого сохраняются в заданных пределах значения параметров, характеризующих способность объекта выполнять заданные функции.

Остаточный ресурс – суммарная наработка объекта от момента контроля его технического состояния до перехода в предельное состояние. Аналогично вводятся понятия остаточной наработки до отказа, остаточного срока службы и остаточного срока хранения.

Назначенный ресурс – суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния.

Согласно существующей практике оценки надёжности ЭСН потребителей различают следующие по продолжительности перерывы в ЭСН .

Кратковременный перерыв ограничен по продолжительности интервалом времени, необходимым для того, чтобы восстановить ЭСН автоматически с помощью телемеханики или ручным включением там, где оператор может сделать это немедленно. Такие операции обычно не превосходят нескольких минут.

Перерыв средней продолжительности ограничен интервалом времени, необходимым для того, чтобы вручную восстановить электроснабжение в местах, где нет дежурного оператора. Такие операции занимают 1–2 часа.

Длительный перерыв , который не может быть квалифицирован как перерыв кратковременный или средней продолжительности.

В теории надежности используются следующие показатели долговечности.

Средний ресурс – это математическое ожидание ресурса.

Гамма-процентный ресурс – это наработка, в течение которой объект не достигнет предельного состояния с заданной вероятность γ, выраженной в процентах.

Назначенный ресурс

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью , выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Основными характеристиками долговечности являются средний срок службы и средний ресурс.

Для восстанавливаемого объекта средний срок службы представляет собой среднюю календарную продолжительность эксплуатации объекта от ее начала или возобновления после предупредительного ремонта до наступления предельного состояния.

Средний ресурс представляет собой среднюю наработку объекта от начала эксплуатации или ее возобновления после предупредительного ремонта до наступления предельного состояния.

Для невосстанавливаемого объекта эти характеристики совпадают и представляют собой среднюю продолжительность работы до отказа или до наступления предельного состояния. Практически эта величина совпадет со средней наработкой до отказа Тср.

Статистическая оценка среднего срока службы может быть получена по результатам наблюдения за n однотипными электросетевыми объектами, эксплуатируемыми приблизительно в одинаковых условиях. Формула для статистической оценки среднего срока службы однотипных объектов по результатам наблюдения имеет вид:

где τj – срок службы j-го объекта;

n – количество однотипных объектов.

Срок службы каждого конкретного объекта наблюдения зависит от многих случайных факторов, при этом предельное состояние объекта практически определяется его характеристиками, свидетельствующими о том, что его дальнейшая эксплуатация становится небезопасной для человека и окружающей среды, или становится экономически невыгодной.

Вопрос 9. Показатели, применяемые для оценки безотказности изделий.

Вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает.

Функция P(t) является непрерывной функцией времени, обладающей следующими очевидными свойствами:

Таким образом, вероятность безотказной работы в течение конечных интервалов времени может иметь значения 0

Статистическая вероятность безотказной работы характеризуется отношением числа исправно работающих изделий к общему числу изделий, находящихся под наблюдением.

где - число изделий, исправно работающих к моменту времени t;

Число изделий, находящихся под наблюдением.

Вероятность отказа - вероятность того, что объект откажет хотя бы 1 раз в течение заданного времени работы, будучи работоспособным в начальный момент.

Статистическая оценка вероятности отказа - отношение числа объектов, отказавших к моменту времени t, к числу объектов, исправных в начальный момент времени.

где - число изделий, отказавших к моменту времени t.

Вероятность безотказной работы и вероятность отказа в интервале от 0 до t связаны зависимостью Q (t) = 1 - Р (t).

Интенсивность отказов - условная плотность вероятности возникновения отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента при условии, что до этого момента отказ не возник:

Интенсивность отказов – отношение числа отказавших объектов в единицу времени к среднему числу объектов, исправно работавших в рассматриваемый промежуток времени (при условии, что отказавшие изделия не восстанавливаются и не заменяются исправными).

где - число изделий, отказавших в течение промежутка времени .

Интенсивность отказов позволяет наглядно установить характерные периоды работы объектов:

1. Период приработки - характеризуется относительно высокой интенсивностью отказов. В этот период преобладают в основном внезапные отказы, происходящие из-за дефектов, вызванных ошибками при проектировании или нарушением технологии изготовления.

2. Время нормальной работы машин - характеризуется примерно постоянной интенсивностью отказов и является основным и наиболее длительным за время эксплуатации машин. Внезапные отказы машин в этот период происходят редко и вызываются в основном скрытыми дефектами производства, преждевременным износом отдельных деталей.

3. Третий период характеризуется значительным возрастанием интенсивности отказов. Основная причина - износ деталей и сопряжений.

Средняя наработка до отказа – отношение суммы наработки объектов до отказа к числу наблюдаемых объектов, если они все отказали за время испытаний. Применяется для неремонтируемых изделий.

Средняя наработка на отказ – отношение суммарной наработки восстанавливаемых объектов к суммарному числу отказов этих объектов.

Вопрос 10. Показатели, применяемые для оценки долговечности изделий.

Технический ресурс - это наработка объекта от начала эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние. Наработка может измеряться в единицах времени, длины, площади, объема, массы и других единицах.

Математическое ожидание ресурса называется средним ресурсом .

Различают средний ресурс до первого капитального ремонта, средний межремонтный ресурс, средний ресурс до списания, назначенный ресурс .

Гамма-процентный ресурс - наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью , выраженной в процентах. Данный показатель применяется для выбора срока гарантии изделий, определения потребности в запасных частях.

Срок службы - календарная продолжительность от начала эксплуатации объекта или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Математическое ожидание срока службы называется средним сроком службы. Различают срок службы до первого капитального ремонта, срок службы между капитальными ремонтами, срок службы до списания, средний срок службы, гамма-процентный срок службы и назначенный средний срок службы.

Гамма-процентный срок службы - это календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью , выраженной в процентах.

Назначенный срок службы - это календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Следует различать также гарантийный срок службы - отрезок календарного времени, в течение которого изготовитель обязуется безвозмездно исправлять все выявляющиеся в процессе эксплуатации изделий недостатки при условии соблюдения потребителем правил эксплуатации. Гарантийный срок службы исчисляется с момента приобретения или получения изделий потребителем. Он не является показателем надежности изделий и не может служить основой для нормирования и регулирования надежности, а лишь устанавливает взаимоотношения между потребителем и изготовителем.

Вопрос 11. Показатели, применяемые для оценки ремонтопригодности и сохраняемости изделий.

Показатели ремонтопригодности

Вероятность восстановления работоспособного состояния - вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного. Этот показатель вычисляется т по формуле

Среднее время восстановления работоспособного состояния - математическое ожидание времени восстановления работоспособного состояния.

d *(t ) - количество отказов

Показатели сохраняемости

Гамма-процентный срок сохраняемости - срок сохраняемости, достигаемый объектом с заданной вероятностью у, выраженной в процентах.

Средний срок сохраняемости - математическое ожидание срока сохраняемости.

Вопрос 12. Комплексные показатели надежности изделия.

Коэффициент готовности – вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается.

Коэффициент готовности характеризует обобщенные свойства обслуживаемого оборудования. Например, изделие с высокой интенсивностью отказов, но быстро восстанавливаемое может иметь коэффициент готовности больше, чем изделие с малой интенсивностью отказов и большим средним временем восстановления.

Коэффициент технического использования – отношение математического ожидания интервалов времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к сумме математических ожиданий интервалов времени пребывания объекта в работоспособном состоянии, простоев, обусловленных техническим обслуживанием, и ремонтов за тот же период эксплуатации.

Коэффициент учитывает затраты времени на плановые и неплановые ремонты и характеризует долю времени нахождения объекта в работоспособном состоянии относительно рассматриваемой продолжительности эксплуатации.

Коэффициент оперативной готовности – вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени. Характеризует надежность объектов, необходимость применения которых возникает в произвольный момент времени, после которого требуется безотказная работа.

Коэффициент планируемого применения - это доля периода эксплуатации, в течение которой объект не должен находиться на плановом техническом обслуживании и ремонте, т.е. это отношение разности заданной продолжительности эксплуатации и математического ожидания суммарной продолжительности плановых технических обслуживании и ремонтов за этот же период эксплуатации к значению этого периода;

Коэффициент сохранения эффективности - отношение значения показателя эффективности за определенную продолжительность эксплуатации к номинальному значению этого показателя, вычисленному при условии, что отказы объекта в течение того же периода эксплуатации не возникают. Коэффициент сохранения эффективности характеризует степень влияния отказов элементов объекта на эффективность его применения по назначению.